IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i12p4552-4557.html
   My bibliography  Save this article

Effects of climate change on the built environment

Author

Listed:
  • Roberts, Simon

Abstract

New buildings will have to be designed to cope with the effects of climate change. These include warmer weather in which keeping cool will be important, more extreme and wet weather, and increased subsidence risk. Flood risk areas will increase, requiring measures for both resistance for initial protection and resilience for rapid recovering. At the same time, new buildings must use less fossil fuel in a low or zero-carbon world. Homes, offices, schools and other buildings will need to maximise passive measures of more effective insulation, improved airtightness and greater thermal mass. They will also need to make more use of solar energy and other renewable inputs. New buildings will incorporate a range of new technologies to reduce their energy use, and to cut the energy needed to build them, including the embodied energy in the materials they contain.

Suggested Citation

  • Roberts, Simon, 2008. "Effects of climate change on the built environment," Energy Policy, Elsevier, vol. 36(12), pages 4552-4557, December.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:12:p:4552-4557
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00481-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roberts, Simon, 2008. "Altering existing buildings in the UK," Energy Policy, Elsevier, vol. 36(12), pages 4482-4486, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hughes, Caroline & Natarajan, Sukumar & Liu, Chunde & Chung, Woong June & Herrera, Manuel, 2019. "Winter thermal comfort and health in the elderly," Energy Policy, Elsevier, vol. 134(C).
    2. Roshan, Gh.R. & Orosa, J.A & Nasrabadi, T., 2012. "Simulation of climate change impact on energy consumption in buildings, case study of Iran," Energy Policy, Elsevier, vol. 49(C), pages 731-739.
    3. Stahel Serano Bibang Bi Obam Assoumou & Li Zhu & Clement Francis Deng, 2023. "A Conceptual Framework for Achieving Sustainable Building Through Compressed Earth Block: a Case of Ouagadougou, Burkina Faso," Circular Economy and Sustainability,, Springer.
    4. Pacheco, Miguel & Lamberts, Roberto, 2013. "Assessment of technical and economical viability for large-scale conversion of single family residential buildings into zero energy buildings in Brazil: Climatic and cultural considerations," Energy Policy, Elsevier, vol. 63(C), pages 716-725.
    5. Saari, Arto & Kalamees, Targo & Jokisalo, Juha & Michelsson, Rasmus & Alanne, Kari & Kurnitski, Jarek, 2012. "Financial viability of energy-efficiency measures in a new detached house design in Finland," Applied Energy, Elsevier, vol. 92(C), pages 76-83.
    6. Wang, Xiaoxin & Kendrick, Christopher & Ogden, Raymond & Walliman, Nicholas & Baiche, Bousmaha, 2013. "A case study on energy consumption and overheating for a UK industrial building with rooflights," Applied Energy, Elsevier, vol. 104(C), pages 337-344.
    7. Arce, Pablo & Medrano, Marc & Gil, Antoni & Oró, Eduard & Cabeza, Luisa F., 2011. "Overview of thermal energy storage (TES) potential energy savings and climate change mitigation in Spain and Europe," Applied Energy, Elsevier, vol. 88(8), pages 2764-2774, August.
    8. Dowson, Mark & Poole, Adam & Harrison, David & Susman, Gideon, 2012. "Domestic UK retrofit challenge: Barriers, incentives and current performance leading into the Green Deal," Energy Policy, Elsevier, vol. 50(C), pages 294-305.
    9. Flora Maria Díaz-Pérez & Carlos Gustavo García-González & Alan Fyall, 2021. "Accommodation, Seasonality and Domestic Tourism to National Parks: Implications for Environmental Policy," Sustainability, MDPI, vol. 13(9), pages 1-26, April.
    10. Bessa, Vanessa M.T. & Prado, Racine T.A., 2015. "Reduction of carbon dioxide emissions by solar water heating systems and passive technologies in social housing," Energy Policy, Elsevier, vol. 83(C), pages 138-150.
    11. Huang, Kuo-Tsang & Hwang, Ruey-Lung, 2016. "Future trends of residential building cooling energy and passive adaptation measures to counteract climate change: The case of Taiwan," Applied Energy, Elsevier, vol. 184(C), pages 1230-1240.
    12. Roberts, Simon, 2008. "Altering existing buildings in the UK," Energy Policy, Elsevier, vol. 36(12), pages 4482-4486, December.
    13. World Bank, 2017. "Brazil’s INDC Restoration and Reforestation Target," World Bank Publications - Reports 28588, The World Bank Group.
    14. Brambilla, Arianna & Sangiorgio, Alberto, 2020. "Mould growth in energy efficient buildings: Causes, health implications and strategies to mitigate the risk," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Olonscheck, Mady & Holsten, Anne & Kropp, Jürgen P., 2011. "Heating and cooling energy demand and related emissions of the German residential building stock under climate change," Energy Policy, Elsevier, vol. 39(9), pages 4795-4806, September.
    2. Abdulazeez Rotimi & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2017. "Estimation and Validation of Energy Consumption in UK Existing Hotel Building Using Dynamic Simulation Software," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    3. Ruparathna, Rajeev & Hewage, Kasun & Sadiq, Rehan, 2016. "Improving the energy efficiency of the existing building stock: A critical review of commercial and institutional buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1032-1045.
    4. Haonan Zhang, 2023. "Leveraging policy instruments and financial incentives to reduce embodied carbon in energy retrofits," Papers 2304.03403, arXiv.org.
    5. Dowson, Mark & Poole, Adam & Harrison, David & Susman, Gideon, 2012. "Domestic UK retrofit challenge: Barriers, incentives and current performance leading into the Green Deal," Energy Policy, Elsevier, vol. 50(C), pages 294-305.
    6. Ballarini, Ilaria & Corgnati, Stefano Paolo & Corrado, Vincenzo, 2014. "Use of reference buildings to assess the energy saving potentials of the residential building stock: The experience of TABULA project," Energy Policy, Elsevier, vol. 68(C), pages 273-284.
    7. Rashidi, Saman & Esfahani, Javad Abolfazli & Karimi, Nader, 2018. "Porous materials in building energy technologies—A review of the applications, modelling and experiments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 229-247.
    8. Abdurahman Alrobaie & Moncef Krarti, 2022. "A Review of Data-Driven Approaches for Measurement and Verification Analysis of Building Energy Retrofits," Energies, MDPI, vol. 15(21), pages 1-30, October.
    9. Weiss, Julika & Dunkelberg, Elisa & Vogelpohl, Thomas, 2012. "Improving policy instruments to better tap into homeowner refurbishment potential: Lessons learned from a case study in Germany," Energy Policy, Elsevier, vol. 44(C), pages 406-415.
    10. Shiva Amirkhani & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2020. "Impact of Adding Comfort Cooling Systems on the Energy Consumption and EPC Rating of an Existing UK Hotel," Sustainability, MDPI, vol. 12(7), pages 1-16, April.
    11. Majid Baseer & Christian Ghiaus & Roxane Viala & Ninon Gauthier & Souleymane Daniel, 2023. "pELECTRE-Tri: Probabilistic ELECTRE-Tri Method—Application for the Energy Renovation of Buildings," Energies, MDPI, vol. 16(14), pages 1-25, July.
    12. Schwartz, Yair & Raslan, Rokia & Mumovic, Dejan, 2022. "Refurbish or replace? The Life Cycle Carbon Footprint and Life Cycle Cost of Refurbished and New Residential Archetype Buildings in London," Energy, Elsevier, vol. 248(C).
    13. George A Xydis & Katerina Kremastioti & Maria Panagiotidou, 2022. "Wind energy and the historic environment: A business-driven symbiosis approach," Energy & Environment, , vol. 33(3), pages 582-598, May.
    14. Hope, Alexander John & Booth, Alexander, 2014. "Attitudes and behaviours of private sector landlords towards the energy efficiency of tenanted homes," Energy Policy, Elsevier, vol. 75(C), pages 369-378.
    15. Kuckshinrichs, Wilhelm & Kronenberg, Tobias & Hansen, Patrick, 2010. "The social return on investment in the energy efficiency of buildings in Germany," Energy Policy, Elsevier, vol. 38(8), pages 4317-4329, August.
    16. Groesser, Stefan N., 2014. "Co-evolution of legal and voluntary standards: Development of energy efficiency in Swiss residential building codes," Technological Forecasting and Social Change, Elsevier, vol. 87(C), pages 1-16.
    17. Singh, Manoj Kumar & Attia, Shady & Mahapatra, Sadhan & Teller, Jacques, 2016. "Assessment of thermal comfort in existing pre-1945 residential building stock," Energy, Elsevier, vol. 98(C), pages 122-134.
    18. Hong, Tianzhen & Piette, Mary Ann & Chen, Yixing & Lee, Sang Hoon & Taylor-Lange, Sarah C. & Zhang, Rongpeng & Sun, Kaiyu & Price, Phillip, 2015. "Commercial Building Energy Saver: An energy retrofit analysis toolkit," Applied Energy, Elsevier, vol. 159(C), pages 298-309.
    19. Killip, Gavin, 2013. "Products, practices and processes: exploring the innovation potential for low-carbon housing refurbishment among small and medium-sized enterprises (SMEs) in the UK construction industry," Energy Policy, Elsevier, vol. 62(C), pages 522-530.
    20. Ziortza Egiluz & Jesús Cuadrado & Andoni Kortazar & Ignacio Marcos, 2021. "Multi-Criteria Decision-Making Method for Sustainable Energy-Saving Retrofit Façade Solutions," Sustainability, MDPI, vol. 13(23), pages 1-25, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:12:p:4552-4557. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.