IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v38y2010i11p7257-7268.html
   My bibliography  Save this article

Wind power integration and power system flexibility-An empirical analysis of extreme events in Germany under the new negative price regime

Author

Listed:
  • Nicolosi, Marco

Abstract

In this article, the flexibility of the German power market with respect to the integration of an increasing share of electricity from renewable energy sources was analysed. Flexibility limiting system components, which cause negative prices, are explained and illustrated for the German market. The decision of the European Energy Exchange in Leipzig to allow negative price bids is then explained. The empirical data illustrate the flexibility of conventional generating capacities in Germany from October 2008 to December 2009. Of the 86Â h of negative spot prices, 19Â h were significantly negative, with prices of at least -100Â [euro]/MWh. These extreme hours were analysed in greater detail by the examination of different system components. Thereby, load, wind power infeed and conventional generation by fuel type were observed, as well as the market for negative tertiary reserve, as indicators for market tightness. Although the market situations were found to be severe, under the current conditions, it could have been much worse. In order to enable the market to clear at all times, policy recommendations are provided and long-run implications of an increasing RES-E share on the conventional generation capacity are discussed. The article concludes with an outlook on additional power system flexibility options.

Suggested Citation

  • Nicolosi, Marco, 2010. "Wind power integration and power system flexibility-An empirical analysis of extreme events in Germany under the new negative price regime," Energy Policy, Elsevier, vol. 38(11), pages 7257-7268, November.
  • Handle: RePEc:eee:enepol:v:38:y:2010:i:11:p:7257-7268
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(10)00586-0
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Cramton, Peter & Stoft, Steven, 2008. "Forward reliability markets: Less risk, less market power, more efficiency," Utilities Policy, Elsevier, vol. 16(3), pages 194-201, September.
    2. Lise, Wietze & Hobbs, Benjamin F. & Hers, Sebastiaan, 2008. "Market power in the European electricity market--The impacts of dry weather and additional transmission capacity," Energy Policy, Elsevier, vol. 36(4), pages 1331-1343, April.
    3. Brunekreeft, Gert & Neuhoff, Karsten & Newbery, David, 2005. "Electricity transmission: An overview of the current debate," Utilities Policy, Elsevier, vol. 13(2), pages 73-93, June.
    4. Sovacool, Benjamin K. & Hirsh, Richard F., 2009. "Beyond batteries: An examination of the benefits and barriers to plug-in hybrid electric vehicles (PHEVs) and a vehicle-to-grid (V2G) transition," Energy Policy, Elsevier, vol. 37(3), pages 1095-1103, March.
    5. Joskow, Paul L., 2008. "Capacity payments in imperfect electricity markets: Need and design," Utilities Policy, Elsevier, vol. 16(3), pages 159-170, September.
    6. Weber, Christoph, 2010. "Adequate intraday market design to enable the integration of wind energy into the European power systems," Energy Policy, Elsevier, vol. 38(7), pages 3155-3163, July.
    7. Just, Sebastian & Weber, Christoph, 2008. "Pricing of reserves: Valuing system reserve capacity against spot prices in electricity markets," Energy Economics, Elsevier, vol. 30(6), pages 3198-3221, November.
    8. Bode, Sven & Groscurth, Helmuth-Michael, 2006. "The Effect of the German Renewable Energy Act (EEG) on "the Electricity Price"," HWWA Discussion Papers 358, Hamburg Institute of International Economics (HWWA).
    9. Roques, Fabien A., 2008. "Market design for generation adequacy: Healing causes rather than symptoms," Utilities Policy, Elsevier, vol. 16(3), pages 171-183, September.
    10. Weigt, Hannes & Hirschhausen, Christian von, 2008. "Price formation and market power in the German wholesale electricity market in 2006," Energy Policy, Elsevier, vol. 36(11), pages 4227-4234, November.
    11. Richard J. Green, 2008. "Electricity Wholesale Markets: Designs Now and in a Low-carbon Future," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 95-124.
    12. Strbac, Goran, 2008. "Demand side management: Benefits and challenges," Energy Policy, Elsevier, vol. 36(12), pages 4419-4426, December.
    13. Batlle, Carlos & Pérez-Arriaga, Ignacio J., 2008. "Design criteria for implementing a capacity mechanism in deregulated electricity markets," Utilities Policy, Elsevier, vol. 16(3), pages 184-193, September.
    14. Peter Cramton, 2003. "Competitive Bidding Behavior in Uniform-Price Auction Markets," Papers of Peter Cramton 03ferc1, University of Maryland, Department of Economics - Peter Cramton, revised 2003.
    15. Sensfuß, Frank & Ragwitz, Mario & Genoese, Massimo, 2008. "The merit-order effect: A detailed analysis of the price effect of renewable electricity generation on spot market prices in Germany," Energy Policy, Elsevier, vol. 36(8), pages 3076-3084, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nicolosi, S., 2010. "Wind power integration, negative prices and power system flexibility - An empirical analysis of extreme events in Germany," MPRA Paper 31834, University Library of Munich, Germany.
    2. Simshauser, Paul, 2022. "Rooftop solar PV and the peak load problem in the NEM's Queensland region," Energy Economics, Elsevier, vol. 109(C).
    3. Simshauser, Paul, 2019. "Missing money, missing policy and Resource Adequacy in Australia's National Electricity Market," Utilities Policy, Elsevier, vol. 60(C), pages 1-1.
    4. Simshauser, Paul, 2020. "Merchant renewables and the valuation of peaking plant in energy-only markets," Energy Economics, Elsevier, vol. 91(C).
    5. Simshauser, Paul, 2018. "On intermittent renewable generation & the stability of Australia's National Electricity Market," Energy Economics, Elsevier, vol. 72(C), pages 1-19.
    6. Simshauser, P., 2021. "Rooftop Solar PV and the Peak Load Problem in the NEM’s Queensland Region," Cambridge Working Papers in Economics 2180, Faculty of Economics, University of Cambridge.
    7. Simshauser, P., 2020. "Merchant utilities and boundaries of the firm: vertical integration in energy-only markets," Cambridge Working Papers in Economics 2039, Faculty of Economics, University of Cambridge.
    8. Simshauser, P. & Gilmore, J., 2020. "Is the NEM broken? Policy discontinuity and the 2017-2020 investment megacycle," Cambridge Working Papers in Economics 2048, Faculty of Economics, University of Cambridge.
    9. Henriot, Arthur & Glachant, Jean-Michel, 2013. "Melting-pots and salad bowls: The current debate on electricity market design for integration of intermittent RES," Utilities Policy, Elsevier, vol. 27(C), pages 57-64.
    10. Jean-Michel Glachant & Arthur Henriot, 2013. "Melting-pots and salad bowls: the current debate on electricity market design for RES integration," Working Papers EPRG 1329, Energy Policy Research Group, Cambridge Judge Business School, University of Cambridge.
    11. Wolfgang Buchholz & Jonas Frank & Hans-Dieter Karl & Johannes Pfeiffer & Karen Pittel & Ursula Triebswetter & Jochen Habermann & Wolfgang Mauch & Thomas Staudacher, 2012. "Die Zukunft der Energiemärkte: Ökonomische Analyse und Bewertung von Potenzialen und Handlungsmöglichkeiten," ifo Forschungsberichte, ifo Institute - Leibniz Institute for Economic Research at the University of Munich, number 57.
    12. Pape, Christian & Hagemann, Simon & Weber, Christoph, 2016. "Are fundamentals enough? Explaining price variations in the German day-ahead and intraday power market," Energy Economics, Elsevier, vol. 54(C), pages 376-387.
    13. repec:dui:wpaper:1502 is not listed on IDEAS
    14. Viehmann, Johannes, 2011. "Risk premiums in the German day-ahead Electricity Market," Energy Policy, Elsevier, vol. 39(1), pages 386-394, January.
    15. Bublitz, Andreas & Keles, Dogan & Zimmermann, Florian & Fraunholz, Christoph & Fichtner, Wolf, 2019. "A survey on electricity market design: Insights from theory and real-world implementations of capacity remuneration mechanisms," Energy Economics, Elsevier, vol. 80(C), pages 1059-1078.
    16. Simshauser, Paul & Gilmore, Joel, 2022. "Climate change policy discontinuity & Australia's 2016-2021 renewable investment supercycle," Energy Policy, Elsevier, vol. 160(C).
    17. Keppler, Jan Horst & Quemin, Simon & Saguan, Marcelo, 2022. "Why the sustainable provision of low-carbon electricity needs hybrid markets," Energy Policy, Elsevier, vol. 171(C).
    18. Steggals, Will & Gross, Robert & Heptonstall, Philip, 2011. "Winds of change: How high wind penetrations will affect investment incentives in the GB electricity sector," Energy Policy, Elsevier, vol. 39(3), pages 1389-1396, March.
    19. Brown, David P., 2018. "Capacity payment mechanisms and investment incentives in restructured electricity markets," Energy Economics, Elsevier, vol. 74(C), pages 131-142.
    20. Ringler, Philipp & Keles, Dogan & Fichtner, Wolf, 2017. "How to benefit from a common European electricity market design," Energy Policy, Elsevier, vol. 101(C), pages 629-643.
    21. Cuervo, Felipe Isaza & Botero, Sergio Botero, 2016. "Wind power reliability valuation in a Hydro-Dominated power market: The Colombian case," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1359-1372.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:38:y:2010:i:11:p:7257-7268. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.