IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v36y2008i7p2694-2708.html
   My bibliography  Save this article

CO2, GDP and RET: An aggregate economic equilibrium analysis for Turkey

Author

Listed:
  • Kumbaroglu, Gürkan
  • Karali, Nihan
  • ArIkan, YIldIz

Abstract

There is a worldwide interest in renewable electricity technologies (RETs) due to growing concerns about global warming and climate change. As an EU candidate country whose energy demand increases exponentially, Turkey inevitably shares this common interest on RET. This study, using an aggregate economic equilibrium model, explores the economic costs of different policy measures to mitigate CO2 emissions in Turkey. The model combines energy demands, capital requirements and labor inputs at a constant elasticity of substitution under an economy-wide nested production function. Growing energy demand, triggered by economic growth, is met by increased supply and initiates new capacity additions. Investment into RET is encouraged via the incorporation of (a) endogenous technological learning through which the RET cost declines as a function of cumulative capacity, and (b) a willingness to pay (WTP) function which imposes the WTP of consumers as a lower bound on RET installation. The WTP equation is obtained as a function of consumer income categories, based on data gathered from a pilot survey in which the contingent valuation methodology was employed. The impacts of various emission reduction scenarios on GDP growth and RET diffusion are explored. As expected, RET penetration is accelerated under faster technological learning and higher WTP conditions. It is found that stabilizing CO2 emissions to year 2005 levels causes economic losses amounting to 17% and 23% of GDP in the years 2020 and 2030, respectively.

Suggested Citation

  • Kumbaroglu, Gürkan & Karali, Nihan & ArIkan, YIldIz, 2008. "CO2, GDP and RET: An aggregate economic equilibrium analysis for Turkey," Energy Policy, Elsevier, vol. 36(7), pages 2694-2708, July.
  • Handle: RePEc:eee:enepol:v:36:y:2008:i:7:p:2694-2708
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301-4215(08)00164-X
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Telli, Çagatay & Voyvoda, Ebru & Yeldan, Erinç, 2008. "Economics of environmental policy in Turkey: A general equilibrium investigation of the economic evaluation of sectoral emission reduction policies for climate change," Journal of Policy Modeling, Elsevier, vol. 30(2), pages 321-340.
    2. Boyle Kevin J. & Desvousges William H. & Johnson F. Reed & Dunford Richard W. & Hudson Sara P., 1994. "An Investigation of Part-Whole Biases in Contingent-Valuation Studies," Journal of Environmental Economics and Management, Elsevier, vol. 27(1), pages 64-83, July.
    3. Ibenholt, Karin, 2002. "Explaining learning curves for wind power," Energy Policy, Elsevier, vol. 30(13), pages 1181-1189, October.
    4. Manne, Alan & Mendelsohn, Robert & Richels, Richard, 1995. "MERGE : A model for evaluating regional and global effects of GHG reduction policies," Energy Policy, Elsevier, vol. 23(1), pages 17-34, January.
    5. Masui, Toshihiko, 2005. "Policy evaluations under environmental constraints using a computable general equilibrium model," European Journal of Operational Research, Elsevier, vol. 166(3), pages 843-855, November.
    6. Argote, L. & Epple, D., 1990. "Learning Curves In Manufacturing," GSIA Working Papers 89-90-02, Carnegie Mellon University, Tepper School of Business.
    7. Cummings, Ronald G & Harrison, Glenn W & Rutstrom, E Elisabet, 1995. "Homegrown Values and Hypothetical Surveys: Is the Dichotomous Choice Approach Incentive-Compatible?," American Economic Review, American Economic Association, vol. 85(1), pages 260-266, March.
    8. Neij, Lena, 1997. "Use of experience curves to analyse the prospects for diffusion and adoption of renewable energy technology," Energy Policy, Elsevier, vol. 25(13), pages 1099-1107, November.
    9. K. J. Arrow, 1971. "The Economic Implications of Learning by Doing," Palgrave Macmillan Books, in: F. H. Hahn (ed.), Readings in the Theory of Growth, chapter 11, pages 131-149, Palgrave Macmillan.
    10. David J. Bjornstad & James R. Kahn (ed.), 1996. "The Contingent Valuation of Environmental Resources," Books, Edward Elgar Publishing, number 731.
    11. Ronald G. Cummings & Philip T. Ganderton & Thomas McGuckin, 1994. "Substitution Effects in CVM Values," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 76(2), pages 205-214.
    12. Nordhaus, William D & Yang, Zili, 1996. "A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies," American Economic Review, American Economic Association, vol. 86(4), pages 741-765, September.
    13. Kamp, Linda M. & Smits, Ruud E. H. M. & Andriesse, Cornelis D., 2004. "Notions on learning applied to wind turbine development in the Netherlands and Denmark," Energy Policy, Elsevier, vol. 32(14), pages 1625-1637, September.
    14. Evrendilek, F & Ertekin, C, 2003. "Assessing the potential of renewable energy sources in Turkey," Renewable Energy, Elsevier, vol. 28(15), pages 2303-2315.
    15. Stephen C Peck & Thomas J. Teisberg, 1992. "CETA: A Model for Carbon Emissions Trajectory Assessment," The Energy Journal, International Association for Energy Economics, vol. 0(Number 1), pages 55-78.
    16. Marvin B. Lieberman, 1987. "The learning curve, diffusion, and competitive strategy," Strategic Management Journal, Wiley Blackwell, vol. 8(5), pages 441-452, September.
    17. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
    18. Peter A. Diamond & Jerry A. Hausman, 1994. "Contingent Valuation: Is Some Number Better than No Number?," Journal of Economic Perspectives, American Economic Association, vol. 8(4), pages 45-64, Fall.
    19. Neij, L, 1999. "Cost dynamics of wind power," Energy, Elsevier, vol. 24(5), pages 375-389.
    20. Chen, Wenying & Wu, Zongxin & He, Jiankun & Gao, Pengfei & Xu, Shaofeng, 2007. "Carbon emission control strategies for China: A comparative study with partial and general equilibrium versions of the China MARKAL model," Energy, Elsevier, vol. 32(1), pages 59-72.
    21. Atsushi Kurosawa & Hiroshi Yagita & Weisheng Zhou & Koji Tokimatsu & Yukio Yanagisawa, 1999. "Analysis of Carbon Emission Stabilization Targets and Adaptation by Integrated Assessment Model," The Energy Journal, International Association for Energy Economics, vol. 0(Special I), pages 157-175.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumbaroglu, Gürkan & Madlener, Reinhard & Demirel, Mustafa, 2008. "A real options evaluation model for the diffusion prospects of new renewable power generation technologies," Energy Economics, Elsevier, vol. 30(4), pages 1882-1908, July.
    2. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    3. Yeh, Sonia & Rubin, Edward S., 2012. "A review of uncertainties in technology experience curves," Energy Economics, Elsevier, vol. 34(3), pages 762-771.
    4. Lehmann, Paul, 2009. "Climate policies with pollution externalities and learning spillovers," UFZ Discussion Papers 10/2009, Helmholtz Centre for Environmental Research (UFZ), Division of Social Sciences (ÖKUS).
    5. Lindman, Åsa & Söderholm, Patrik, 2012. "Wind power learning rates: A conceptual review and meta-analysis," Energy Economics, Elsevier, vol. 34(3), pages 754-761.
    6. Wu, X.D. & Yang, Q. & Chen, G.Q. & Hayat, T. & Alsaedi, A., 2016. "Progress and prospect of CCS in China: Using learning curve to assess the cost-viability of a 2×600MW retrofitted oxyfuel power plant as a case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1274-1285.
    7. Kahouli-Brahmi, Sondes, 2008. "Technological learning in energy-environment-economy modelling: A survey," Energy Policy, Elsevier, vol. 36(1), pages 138-162, January.
    8. Desroches, Louis-Benoit & Garbesi, Karina & Kantner, Colleen & Van Buskirk, Robert & Yang, Hung-Chia, 2013. "Incorporating experience curves in appliance standards analysis," Energy Policy, Elsevier, vol. 52(C), pages 402-416.
    9. Papineau, Maya, 2006. "An economic perspective on experience curves and dynamic economies in renewable energy technologies," Energy Policy, Elsevier, vol. 34(4), pages 422-432, March.
    10. Williams, Eric & Hittinger, Eric & Carvalho, Rexon & Williams, Ryan, 2017. "Wind power costs expected to decrease due to technological progress," Energy Policy, Elsevier, vol. 106(C), pages 427-435.
    11. Berglund, Christer & Soderholm, Patrik, 2006. "Modeling technical change in energy system analysis: analyzing the introduction of learning-by-doing in bottom-up energy models," Energy Policy, Elsevier, vol. 34(12), pages 1344-1356, August.
    12. Jamasb, T., 2006. "Technical Change Theory and Learning Curves: Patterns of Progress in Energy Technologies," Cambridge Working Papers in Economics 0625, Faculty of Economics, University of Cambridge.
    13. Nihal KARALI & Kemal SARICA, 2008. "Diffusion Potential of New Energy Efficient Technologies Under an Uncertain Environment," EcoMod2008 23800057, EcoMod.
    14. Dosi, Giovanni & Grazzi, Marco & Mathew, Nanditha, 2017. "The cost-quantity relations and the diverse patterns of “learning by doing”: Evidence from India," Research Policy, Elsevier, vol. 46(10), pages 1873-1886.
    15. Junginger, M. & Faaij, A. & Turkenburg, W. C., 2005. "Global experience curves for wind farms," Energy Policy, Elsevier, vol. 33(2), pages 133-150, January.
    16. Gosens, Jorrit & Hedenus, Fredrik & Sandén, Björn A., 2017. "Faster market growth of wind and PV in late adopters due to global experience build-up," Energy, Elsevier, vol. 131(C), pages 267-278.
    17. Duan, Hong-Bo & Zhu, Lei & Fan, Ying, 2014. "Optimal carbon taxes in carbon-constrained China: A logistic-induced energy economic hybrid model," Energy, Elsevier, vol. 69(C), pages 345-356.
    18. Blanco, María Isabel, 2009. "The economics of wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1372-1382, August.
    19. Kyunam Kim & Eunnyeong Heo & Yeonbae Kim, 2017. "Dynamic Policy Impacts on a Technological-Change System of Renewable Energy: An Empirical Analysis," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 66(2), pages 205-236, February.
    20. Lehmann, Paul, 2013. "Supplementing an emissions tax by a feed-in tariff for renewable electricity to address learning spillovers," Energy Policy, Elsevier, vol. 61(C), pages 635-641.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:36:y:2008:i:7:p:2694-2708. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.