IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v146y2020ics0301421520304900.html
   My bibliography  Save this article

Identifying institutional barriers and policy implications for sustainable energy technology adoption among large organizations in California

Author

Listed:
  • Wang, Liyang
  • Morabito, Molly
  • Payne, Christopher T.
  • Robinson, Gerald

Abstract

Large organizations wield considerable market power, their procurement activities can be leveraged to achieve social, economic and environmental goals by ‘pulling’ more desirable products into the market. However, while there is substantial research in individual consumer buying behavior and market barriers to sustainable technology adoption, less is known about large organizational buying behavior and the impact of institutional barriers in this area. To address these research gaps, we conducted an exploratory study aimed at better understanding the process through which large organizations purchase sustainable energy technologies and what internal barriers they experience during that process. We surveyed and interviewed 120 individuals involved in procurement from Californian organizations representing both public and private sectors. Survey results indicate the need to resolve the conflict between prioritizing lowest first cost and lowest life cycle cost, better engage multiple stakeholders involved in internal decision-making around purchasing, and improve existing procurement tools or offer new ones. We provide recommendations for how policymakers can apply our findings to increase the adoption of sustainable energy technologies in their own organizations and communities.

Suggested Citation

  • Wang, Liyang & Morabito, Molly & Payne, Christopher T. & Robinson, Gerald, 2020. "Identifying institutional barriers and policy implications for sustainable energy technology adoption among large organizations in California," Energy Policy, Elsevier, vol. 146(C).
  • Handle: RePEc:eee:enepol:v:146:y:2020:i:c:s0301421520304900
    DOI: 10.1016/j.enpol.2020.111768
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520304900
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111768?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brown, Marilyn A., 2001. "Market failures and barriers as a basis for clean energy policies," Energy Policy, Elsevier, vol. 29(14), pages 1197-1207, November.
    2. Gadenne, David & Sharma, Bishnu & Kerr, Don & Smith, Tim, 2011. "The influence of consumers' environmental beliefs and attitudes on energy saving behaviours," Energy Policy, Elsevier, vol. 39(12), pages 7684-7694.
    3. Egbue, Ona & Long, Suzanna, 2012. "Barriers to widespread adoption of electric vehicles: An analysis of consumer attitudes and perceptions," Energy Policy, Elsevier, vol. 48(C), pages 717-729.
    4. Nichols, Albert L., 1994. "Demand-side management Overcoming market barriers or obscuring real costs?," Energy Policy, Elsevier, vol. 22(10), pages 840-847, October.
    5. Backlund, Sandra & Thollander, Patrik & Palm, Jenny & Ottosson, Mikael, 2012. "Extending the energy efficiency gap," Energy Policy, Elsevier, vol. 51(C), pages 392-396.
    6. G. Hodgson, 2007. "What Are Institutions?," Voprosy Ekonomiki, NP Voprosy Ekonomiki, issue 8.
    7. Timilsina, Govinda R. & Hochman, Gal & Fedets, Iryna, 2016. "Understanding energy efficiency barriers in Ukraine: Insights from a survey of commercial and industrial firms," Energy, Elsevier, vol. 106(C), pages 203-211.
    8. Mills, Bradford & Schleich, Joachim, 2012. "Residential energy-efficient technology adoption, energy conservation, knowledge, and attitudes: An analysis of European countries," Energy Policy, Elsevier, vol. 49(C), pages 616-628.
    9. DeCanio, Stephen J, 1998. "The efficiency paradox: bureaucratic and organizational barriers to profitable energy-saving investments," Energy Policy, Elsevier, vol. 26(5), pages 441-454, April.
    10. Weber, Lukas, 1997. "Some reflections on barriers to the efficient use of energy," Energy Policy, Elsevier, vol. 25(10), pages 833-835, August.
    11. McEachron, Norman B. & Hall, Douglas C. & Lewis, L.Floyd, 1978. "Life cycle costing as a method of procurement: A framework and example," Energy, Elsevier, vol. 3(4), pages 461-478.
    12. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy paradox and the diffusion of conservation technology," Resource and Energy Economics, Elsevier, vol. 16(2), pages 91-122, May.
    13. Mirza, Umar K. & Ahmad, Nasir & Harijan, Khanji & Majeed, Tariq, 2009. "Identifying and addressing barriers to renewable energy development in Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 927-931, May.
    14. Blumstein, Carl & Krieg, Betsy & Schipper, Lee & York, Carl, 1980. "Overcoming social and institutional barriers to energy conservation," Energy, Elsevier, vol. 5(4), pages 355-371.
    15. Howarth, Richard B. & Andersson, Bo, 1993. "Market barriers to energy efficiency," Energy Economics, Elsevier, vol. 15(4), pages 262-272, October.
    16. Jaffe, Adam B. & Stavins, Robert N., 1994. "The energy-efficiency gap What does it mean?," Energy Policy, Elsevier, vol. 22(10), pages 804-810, October.
    17. Christopher McCrudden, 2004. "Using public procurement to achieve social outcomes," Natural Resources Forum, Blackwell Publishing, vol. 28(4), pages 257-267, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Joaquín Fuentes-del-Burgo & Elena Navarro-Astor & Nuno M. M. Ramos & João Poças Martins, 2021. "Exploring the Critical Barriers to the Implementation of Renewable Technologies in Existing University Buildings," Sustainability, MDPI, vol. 13(22), pages 1-24, November.
    2. Xin Zhang & Shi Liu & Yuqi Zhao & Haicun Yang & Jinchun Li, 2023. "Honeycomb-like Hierarchical Porous Carbon from Lignosulphonate by Enzymatic Hydrolysis and Alkali Activation for High-Performance Supercapacitors," Energies, MDPI, vol. 16(9), pages 1-17, April.
    3. Emily K. Schwartz & Moncef Krarti, 2022. "Review of Adoption Status of Sustainable Energy Technologies in the US Residential Building Sector," Energies, MDPI, vol. 15(6), pages 1-18, March.
    4. Yang, Xin & Zhou, Xiaohe & Deng, Xiangzheng, 2022. "Modeling farmers’ adoption of low-carbon agricultural technology in Jianghan Plain, China: An examination of the theory of planned behavior," Technological Forecasting and Social Change, Elsevier, vol. 180(C).
    5. Todd, Iain & McCauley, Darren, 2021. "Assessing policy barriers to the energy transition in South Africa," Energy Policy, Elsevier, vol. 158(C).
    6. Rachana Vidhi & Prasanna Shrivastava & Abhishek Parikh, 2021. "Social and Technological Impact of Businesses Surrounding Electric Vehicles," Clean Technol., MDPI, vol. 3(1), pages 1-17, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cagno, E. & Worrell, E. & Trianni, A. & Pugliese, G., 2013. "A novel approach for barriers to industrial energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 290-308.
    2. Häckel, Björn & Pfosser, Stefan & Tränkler, Timm, 2017. "Explaining the energy efficiency gap - Expected Utility Theory versus Cumulative Prospect Theory," Energy Policy, Elsevier, vol. 111(C), pages 414-426.
    3. Jafarzadeh, Sepideh & Utne, Ingrid Bouwer, 2014. "A framework to bridge the energy efficiency gap in shipping," Energy, Elsevier, vol. 69(C), pages 603-612.
    4. Apriani Soepardi & Pratikto Pratikto & Purnomo Budi Santoso & Ishardita Pambudi Tama & Patrik Thollander, 2018. "Linking of Barriers to Energy Efficiency Improvement in Indonesia’s Steel Industry," Energies, MDPI, vol. 11(1), pages 1-22, January.
    5. Paramonova, Svetlana & Thollander, Patrik & Ottosson, Mikael, 2015. "Quantifying the extended energy efficiency gap-evidence from Swedish electricity-intensive industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 472-483.
    6. Bilous Liliia, 2020. "Determination of energy efficiency barriers taxonomy in socio-economic model of Ukraine," Technology audit and production reserves, Socionet;Technology audit and production reserves, vol. 3(4(53)), pages 14-21.
    7. Trotta, Gianluca, 2018. "Factors affecting energy-saving behaviours and energy efficiency investments in British households," Energy Policy, Elsevier, vol. 114(C), pages 529-539.
    8. Rohdin, Patrik & Thollander, Patrik & Solding, Petter, 2007. "Barriers to and drivers for energy efficiency in the Swedish foundry industry," Energy Policy, Elsevier, vol. 35(1), pages 672-677, January.
    9. Rockstuhl, Sebastian & Wenninger, Simon & Wiethe, Christian & Häckel, Björn, 2021. "Understanding the risk perception of energy efficiency investments: Investment perspective vs. energy bill perspective," Energy Policy, Elsevier, vol. 159(C).
    10. Backlund, Sandra & Thollander, Patrik & Palm, Jenny & Ottosson, Mikael, 2012. "Extending the energy efficiency gap," Energy Policy, Elsevier, vol. 51(C), pages 392-396.
    11. Trianni, Andrea & Cagno, Enrico & Worrell, Ernst, 2013. "Innovation and adoption of energy efficient technologies: An exploratory analysis of Italian primary metal manufacturing SMEs," Energy Policy, Elsevier, vol. 61(C), pages 430-440.
    12. Seyed Vahid Vakili & Fabio Ballini & Dimitrios Dalaklis & Aykut I. Ölçer, 2022. "A Conceptual Transdisciplinary Framework to Overcome Energy Efficiency Barriers in Ship Operation Cycles to Meet IMO’s Initial Green House Gas Strategy Goals: Case Study for an Iranian Shipping Compan," Energies, MDPI, vol. 15(6), pages 1-25, March.
    13. Fredrik Backman, 2017. "Barriers to Energy Efficiency in Swedish Non-Energy-Intensive Micro- and Small-Sized Enterprises—A Case Study of a Local Energy Program," Energies, MDPI, vol. 10(1), pages 1-13, January.
    14. Ángeles Longarela-Ares & Anxo Calvo-Silvosa & José-Benito Pérez-López, 2020. "The Influence of Economic Barriers and Drivers on Energy Efficiency Investments in Maritime Shipping, from the Perspective of the Principal-Agent Problem," Sustainability, MDPI, vol. 12(19), pages 1-42, September.
    15. Rehmatulla, Nishatabbas & Smith, Tristan, 2015. "Barriers to energy efficiency in shipping: A triangulated approach to investigate the principal agent problem," Energy Policy, Elsevier, vol. 84(C), pages 44-57.
    16. Colmenar-Santos, Antonio & Rosales-Asensio, Enrique & Borge-Diez, David & Mur-Pérez, Francisco, 2015. "Cogeneration and district heating networks: Measures to remove institutional and financial barriers that restrict their joint use in the EU-28," Energy, Elsevier, vol. 85(C), pages 403-414.
    17. Olsthoorn, Mark & Schleich, Joachim & Hirzel, Simon, 2017. "Adoption of Energy Efficiency Measures for Non-residential Buildings: Technological and Organizational Heterogeneity in the Trade, Commerce and Services Sector," Ecological Economics, Elsevier, vol. 136(C), pages 240-254.
    18. Kalantzis, Fotios & Revoltella, Debora, 2019. "How energy audits promote SMEs' energy efficiency investment," EIB Working Papers 2019/02, European Investment Bank (EIB).
    19. Paramonova, Svetlana & Nehler, Therese & Thollander, Patrik, 2021. "Technological change or process innovation – An empirical study of implemented energy efficiency measures from a Swedish industrial voluntary agreements program," Energy Policy, Elsevier, vol. 156(C).
    20. Kangas, Hanna-Liisa & Lazarevic, David & Kivimaa, Paula, 2018. "Technical skills, disinterest and non-functional regulation: Barriers to building energy efficiency in Finland viewed by energy service companies," Energy Policy, Elsevier, vol. 114(C), pages 63-76.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:146:y:2020:i:c:s0301421520304900. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.