IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v138y2020ics0301421520300422.html
   My bibliography  Save this article

Governance of shallow geothermal energy resources

Author

Listed:
  • García-Gil, Alejandro
  • Goetzl, Gregor
  • Kłonowski, Maciej R.
  • Borovic, Staša
  • Boon, David P.
  • Abesser, Corinna
  • Janza, Mitja
  • Herms, Ignasi
  • Petitclerc, Estelle
  • Erlström, Mikael
  • Holecek, Jan
  • Hunter, Taly
  • Vandeweijer, Vincent P.
  • Cernak, Radovan
  • Mejías Moreno, Miguel
  • Epting, Jannis

Abstract

Successful electrification of cities' heating and cooling demands depends on the sustainable implementation of highly efficient ground source heat pumps (GSHP). During the last decade, the use of shallow geothermal energy (SGE) resources in urban areas has experienced an unprecedented boost which nowadays is still showing a steady 9% market growth trend. However, the intensive market incorporation experienced by this technology entails different responsibilities towards the long-term technical and environmental sustainability in order to maintain this positive trend. Here we present a SGE management framework structure and a governance model agreed among 13 European Geological Surveys, providing a roadmap for the different levels of management development, adaptable to any urban scale, and independent of the hydrogeological conditions and the grade of development of SGE technology implementation. The management approach reported is based on the adaptive management concept, thus offering a working flow for the non-linear relationship between planning, implementation and control that establishes a cyclical and iterative management process. The generalized structure of the SGE management framework provided allows the effective analysis of policy to identify and plan for management problems and to select the best management objectives, strategies and measures according to the policy principles proposed here.

Suggested Citation

  • García-Gil, Alejandro & Goetzl, Gregor & Kłonowski, Maciej R. & Borovic, Staša & Boon, David P. & Abesser, Corinna & Janza, Mitja & Herms, Ignasi & Petitclerc, Estelle & Erlström, Mikael & Holecek, Ja, 2020. "Governance of shallow geothermal energy resources," Energy Policy, Elsevier, vol. 138(C).
  • Handle: RePEc:eee:enepol:v:138:y:2020:i:c:s0301421520300422
    DOI: 10.1016/j.enpol.2020.111283
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421520300422
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2020.111283?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruno Piga & Alessandro Casasso & Francesca Pace & Alberto Godio & Rajandrea Sethi, 2017. "Thermal Impact Assessment of Groundwater Heat Pumps (GWHPs): Rigorous vs. Simplified Models," Energies, MDPI, vol. 10(9), pages 1-19, September.
    2. Shortall, Ruth & Davidsdottir, Brynhildur & Axelsson, Guðni, 2015. "Geothermal energy for sustainable development: A review of sustainability impacts and assessment frameworks," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 391-406.
    3. Li, Min & Lai, Alvin C.K., 2015. "Review of analytical models for heat transfer by vertical ground heat exchangers (GHEs): A perspective of time and space scales," Applied Energy, Elsevier, vol. 151(C), pages 178-191.
    4. Hähnlein, Stefanie & Bayer, Peter & Ferguson, Grant & Blum, Philipp, 2013. "Sustainability and policy for the thermal use of shallow geothermal energy," Energy Policy, Elsevier, vol. 59(C), pages 914-925.
    5. García-Gil, Alejandro & Vázquez-Suñe, Enric & Alcaraz, Maria M. & Juan, Alejandro Serrano & Sánchez-Navarro, José Ángel & Montlleó, Marc & Rodríguez, Gustavo & Lao, José, 2015. "GIS-supported mapping of low-temperature geothermal potential taking groundwater flow into account," Renewable Energy, Elsevier, vol. 77(C), pages 268-278.
    6. Alcaraz, Mar & García-Gil, Alejandro & Vázquez-Suñé, Enric & Velasco, Violeta, 2016. "Use rights markets for shallow geothermal energy management," Applied Energy, Elsevier, vol. 172(C), pages 34-46.
    7. Yang, H. & Cui, P. & Fang, Z., 2010. "Vertical-borehole ground-coupled heat pumps: A review of models and systems," Applied Energy, Elsevier, vol. 87(1), pages 16-27, January.
    8. Herbert, Alan & Arthur, Simon & Chillingworth, Grace, 2013. "Thermal modelling of large scale exploitation of ground source energy in urban aquifers as a resource management tool," Applied Energy, Elsevier, vol. 109(C), pages 94-103.
    9. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    10. García-Gil, Alejandro & Muela Maya, Sylvia & Garrido Schneider, Eduardo & Mejías Moreno, Miguel & Vázquez-Suñé, Enric & Marazuela, Miguel Ángel & Mateo Lázaro, Jesús & Sánchez-Navarro, José Ángel, 2019. "Sustainability indicator for the prevention of potential thermal interferences between groundwater heat pump systems in urban aquifers," Renewable Energy, Elsevier, vol. 134(C), pages 14-24.
    11. John W. Lund, 2010. "Direct Utilization of Geothermal Energy," Energies, MDPI, vol. 3(8), pages 1-29, August.
    12. Haehnlein, Stefanie & Bayer, Peter & Blum, Philipp, 2010. "International legal status of the use of shallow geothermal energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2611-2625, December.
    13. Bayer, Peter & Saner, Dominik & Bolay, Stephan & Rybach, Ladislaus & Blum, Philipp, 2012. "Greenhouse gas emission savings of ground source heat pump systems in Europe: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(2), pages 1256-1267.
    14. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2017. "Increased ground temperatures in urban areas: Estimation of the technical geothermal potential," Renewable Energy, Elsevier, vol. 103(C), pages 388-400.
    15. Casasso, Alessandro & Sethi, Rajandrea, 2015. "Modelling thermal recycling occurring in groundwater heat pumps (GWHPs)," Renewable Energy, Elsevier, vol. 77(C), pages 86-93.
    16. Zhang, Changxing & Guo, Zhanjun & Liu, Yufeng & Cong, Xiaochun & Peng, Donggen, 2014. "A review on thermal response test of ground-coupled heat pump systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 851-867.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alejandro García-Gil & Miguel Mejías Moreno & Eduardo Garrido Schneider & Miguel Ángel Marazuela & Corinna Abesser & Jesús Mateo Lázaro & José Ángel Sánchez Navarro, 2020. "Nested Shallow Geothermal Systems," Sustainability, MDPI, vol. 12(12), pages 1-13, June.
    2. Mengting Jiang & Camilo Rindt & David M. J. Smeulders, 2022. "Optimal Planning of Future District Heating Systems—A Review," Energies, MDPI, vol. 15(19), pages 1-38, September.
    3. Manon Bulté & Thierry Duren & Olivier Bouhon & Estelle Petitclerc & Mathieu Agniel & Alain Dassargues, 2021. "Numerical Modeling of the Interference of Thermally Unbalanced Aquifer Thermal Energy Storage Systems in Brussels (Belgium)," Energies, MDPI, vol. 14(19), pages 1-17, September.
    4. János Szanyi & Ladislaus Rybach & Hawkar A. Abdulhaq, 2023. "Geothermal Energy and Its Potential for Critical Metal Extraction—A Review," Energies, MDPI, vol. 16(20), pages 1-28, October.
    5. Santamarta, Juan C. & García-Gil, Alejandro & Expósito, María del Cristo & Casañas, Elías & Cruz-Pérez, Noelia & Rodríguez-Martín, Jesica & Mejías-Moreno, Miguel & Götzl, Gregor & Gemeni, Vasiliki, 2021. "The clean energy transition of heating and cooling in touristic infrastructures using shallow geothermal energy in the Canary Islands," Renewable Energy, Elsevier, vol. 171(C), pages 505-515.
    6. McClean, A. & Pedersen, O.W., 2023. "The role of regulation in geothermal energy in the UK," Energy Policy, Elsevier, vol. 173(C).
    7. Romanov, D. & Leiss, B., 2022. "Geothermal energy at different depths for district heating and cooling of existing and future building stock," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    8. Zhang, Tiansheng & Liu, Chun & Bayer, Peter & Zhang, Liwei & Gong, Xulong & Gu, Kai & Shi, Bin, 2022. "City-wide monitoring and contributing factors to shallow subsurface temperature variability in Nanjing, China," Renewable Energy, Elsevier, vol. 199(C), pages 1105-1115.
    9. Timotej Verbovšek, 2023. "The Influence of Water Temperature on the Hydrogeochemical Composition of Groundwater during Water Extraction and Reinjection with Geothermal Heat," Energies, MDPI, vol. 16(9), pages 1-16, April.
    10. Serianz, Luka & Rman, Nina & Golobič, Iztok & Brenčič, Mihael, 2022. "Groundwater heat transfer and thermal outflow plume modelling in the Alps," Renewable Energy, Elsevier, vol. 182(C), pages 751-763.
    11. Majuri, Pirjo & Arola, Teppo & Kumpula, Anne & Vuorisalo, Timo, 2021. "Geoenergy permits in Finnish regional administration – Contradictory practices and inadequate judicial regulation," Renewable Energy, Elsevier, vol. 168(C), pages 151-159.
    12. Xiaohui Wang & Mohd Alsaleh, 2023. "Determinants of Geothermal Power Sustainability Development: Do Global Competitiveness Markets Matter?," Sustainability, MDPI, vol. 15(4), pages 1-23, February.
    13. Mohd Alsaleh & Xiaohui Wang, 2023. "How Does Information and Communication Technology Affect Geothermal Energy Sustainability?," Sustainability, MDPI, vol. 15(2), pages 1-21, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Somogyi, Viola & Sebestyén, Viktor & Nagy, Georgina, 2017. "Scientific achievements and regulation of shallow geothermal systems in six European countries – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 934-952.
    2. Bayer, Peter & Attard, Guillaume & Blum, Philipp & Menberg, Kathrin, 2019. "The geothermal potential of cities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 106(C), pages 17-30.
    3. Alcaraz, Mar & García-Gil, Alejandro & Vázquez-Suñé, Enric & Velasco, Violeta, 2016. "Use rights markets for shallow geothermal energy management," Applied Energy, Elsevier, vol. 172(C), pages 34-46.
    4. Epting, Jannis & Böttcher, Fabian & Mueller, Matthias H. & García-Gil, Alejandro & Zosseder, Kai & Huggenberger, Peter, 2020. "City-scale solutions for the energy use of shallow urban subsurface resources – Bridging the gap between theoretical and technical potentials," Renewable Energy, Elsevier, vol. 147(P1), pages 751-763.
    5. Tsagarakis, Konstantinos P. & Efthymiou, Loukia & Michopoulos, Apostolos & Mavragani, Amaryllis & Anđelković, Aleksandar S. & Antolini, Francesco & Bacic, Mario & Bajare, Diana & Baralis, Matteo & Bog, 2020. "A review of the legal framework in shallow geothermal energy in selected European countries: Need for guidelines," Renewable Energy, Elsevier, vol. 147(P2), pages 2556-2571.
    6. Alejandro García-Gil & Miguel Mejías Moreno & Eduardo Garrido Schneider & Miguel Ángel Marazuela & Corinna Abesser & Jesús Mateo Lázaro & José Ángel Sánchez Navarro, 2020. "Nested Shallow Geothermal Systems," Sustainability, MDPI, vol. 12(12), pages 1-13, June.
    7. Hähnlein, Stefanie & Bayer, Peter & Ferguson, Grant & Blum, Philipp, 2013. "Sustainability and policy for the thermal use of shallow geothermal energy," Energy Policy, Elsevier, vol. 59(C), pages 914-925.
    8. Böttcher, Fabian & Casasso, Alessandro & Götzl, Gregor & Zosseder, Kai, 2019. "TAP - Thermal aquifer Potential: A quantitative method to assess the spatial potential for the thermal use of groundwater," Renewable Energy, Elsevier, vol. 142(C), pages 85-95.
    9. Stegnar, Gašper & Staničić, D. & Česen, M. & Čižman, J. & Pestotnik, S. & Prestor, J. & Urbančič, A. & Merše, S., 2019. "A framework for assessing the technical and economic potential of shallow geothermal energy in individual and district heating systems: A case study of Slovenia," Energy, Elsevier, vol. 180(C), pages 405-420.
    10. Javadi, Hossein & Mousavi Ajarostaghi, Seyed Soheil & Rosen, Marc A. & Pourfallah, Mohsen, 2019. "Performance of ground heat exchangers: A comprehensive review of recent advances," Energy, Elsevier, vol. 178(C), pages 207-233.
    11. García-Gil, Alejandro & Muela Maya, Sylvia & Garrido Schneider, Eduardo & Mejías Moreno, Miguel & Vázquez-Suñé, Enric & Marazuela, Miguel Ángel & Mateo Lázaro, Jesús & Sánchez-Navarro, José Ángel, 2019. "Sustainability indicator for the prevention of potential thermal interferences between groundwater heat pump systems in urban aquifers," Renewable Energy, Elsevier, vol. 134(C), pages 14-24.
    12. Manon Bulté & Thierry Duren & Olivier Bouhon & Estelle Petitclerc & Mathieu Agniel & Alain Dassargues, 2021. "Numerical Modeling of the Interference of Thermally Unbalanced Aquifer Thermal Energy Storage Systems in Brussels (Belgium)," Energies, MDPI, vol. 14(19), pages 1-17, September.
    13. Cerfontaine, B. & Radioti, G. & Collin, F. & Charlier, R., 2016. "Formulation of a 1D finite element of heat exchanger for accurate modelling of the grouting behaviour: Application to cyclic thermal loading," Renewable Energy, Elsevier, vol. 96(PA), pages 65-79.
    14. Fadejev, Jevgeni & Simson, Raimo & Kurnitski, Jarek & Haghighat, Fariborz, 2017. "A review on energy piles design, sizing and modelling," Energy, Elsevier, vol. 122(C), pages 390-407.
    15. Bayer, Peter & de Paly, Michael & Beck, Markus, 2014. "Strategic optimization of borehole heat exchanger field for seasonal geothermal heating and cooling," Applied Energy, Elsevier, vol. 136(C), pages 445-453.
    16. Pophillat, William & Attard, Guillaume & Bayer, Peter & Hecht-Méndez, Jozsef & Blum, Philipp, 2020. "Analytical solutions for predicting thermal plumes of groundwater heat pump systems," Renewable Energy, Elsevier, vol. 147(P2), pages 2696-2707.
    17. Cui, Yuanlong & Zhu, Jie & Twaha, Ssennoga & Riffat, Saffa, 2018. "A comprehensive review on 2D and 3D models of vertical ground heat exchangers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 84-114.
    18. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2015. "Ground energy balance for borehole heat exchangers: Vertical fluxes, groundwater and storage," Renewable Energy, Elsevier, vol. 83(C), pages 1341-1351.
    19. Rivera, Jaime A. & Blum, Philipp & Bayer, Peter, 2016. "A finite line source model with Cauchy-type top boundary conditions for simulating near surface effects on borehole heat exchangers," Energy, Elsevier, vol. 98(C), pages 50-63.
    20. Zhang, Linfeng & Zhang, Quan & Huang, Gongsheng, 2016. "A transient quasi-3D entire time scale line source model for the fluid and ground temperature prediction of vertical ground heat exchangers (GHEs)," Applied Energy, Elsevier, vol. 170(C), pages 65-75.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:138:y:2020:i:c:s0301421520300422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.