IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v131y2019icp202-214.html
   My bibliography  Save this article

Power sector reform and CO2 abatement costs in Korea

Author

Listed:
  • Ahn, Young-Hwan
  • Jeon, Wooyoung

Abstract

The current Korean administration is driving change in the power sector by gradually phasing out nuclear power plants, expanding the use of renewable energy, and imposing restrictions on the operation of coal power plants. Considering these changes, the marginal abatement cost (MAC) curve would provide crucial information to determine an appropriate greenhouse gas reduction target, especially for 2030. This study derives the MAC curves for the Korean power sector in 2030 using a bottom-up optimization model with three scenarios based on different carbon pricing schedules. In addition, the carbon price required to achieve the CO2 emission targets in the Korean power sector in 2030 are estimated. The results show that a carbon price of 135–157 US$/tCO2 would be required to achieve the 2030 emission target for the power sector. By comparing the MAC curves of three different scenarios, we can reiterate the fact that early action regarding climate change mitigation is more effective and efficient than delayed action.

Suggested Citation

  • Ahn, Young-Hwan & Jeon, Wooyoung, 2019. "Power sector reform and CO2 abatement costs in Korea," Energy Policy, Elsevier, vol. 131(C), pages 202-214.
  • Handle: RePEc:eee:enepol:v:131:y:2019:i:c:p:202-214
    DOI: 10.1016/j.enpol.2019.04.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519302915
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.04.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nadine Ibrahim & Christopher Kennedy, 2016. "A Methodology for Constructing Marginal Abatement Cost Curves for Climate Action in Cities," Energies, MDPI, vol. 9(4), pages 1-17, March.
    2. Park, Hojeong & Lim, Jaekyu, 2009. "Valuation of marginal CO2 abatement options for electric power plants in Korea," Energy Policy, Elsevier, vol. 37(5), pages 1834-1841, May.
    3. Matsushita, Kyohei & Yamane, Fumihiro, 2012. "Pollution from the electric power sector in Japan and efficient pollution reduction," Energy Economics, Elsevier, vol. 34(4), pages 1124-1130.
    4. Kwon, Oh Sang & Yun, Won-Cheol, 1999. "Estimation of the marginal abatement costs of airborne pollutants in Korea's power generation sector," Energy Economics, Elsevier, vol. 21(6), pages 545-558, December.
    5. Fabian Kesicki & Paul Ekins, 2012. "Marginal abatement cost curves: a call for caution," Climate Policy, Taylor & Francis Journals, vol. 12(2), pages 219-236, March.
    6. Delarue, E.D. & Ellerman, A.D. & D'haeseleer, W.D., 2010. "Robust MACCs? The topography of abatement by fuel switching in the European power sector," Energy, Elsevier, vol. 35(3), pages 1465-1475.
    7. Weigt, Hannes & Ellerman, Denny & Delarue, Erik, 2013. "CO2 abatement from renewables in the German electricity sector: Does a CO2 price help?," Energy Economics, Elsevier, vol. 40(S1), pages 149-158.
    8. Bohringer, Christoph & Rutherford, Thomas F., 2008. "Combining bottom-up and top-down," Energy Economics, Elsevier, vol. 30(2), pages 574-596, March.
    9. Chen, Wenying, 2005. "The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling," Energy Policy, Elsevier, vol. 33(7), pages 885-896, May.
    10. Kiuila, O. & Rutherford, T.F., 2013. "Piecewise smooth approximation of bottom–up abatement cost curves," Energy Economics, Elsevier, vol. 40(C), pages 734-742.
    11. Chen, Wenying & Wu, Zongxin & He, Jiankun & Gao, Pengfei & Xu, Shaofeng, 2007. "Carbon emission control strategies for China: A comparative study with partial and general equilibrium versions of the China MARKAL model," Energy, Elsevier, vol. 32(1), pages 59-72.
    12. Du, Limin & Hanley, Aoife & Wei, Chu, 2015. "Estimating the Marginal Abatement Cost Curve of CO2 Emissions in China: Provincial Panel Data Analysis," Energy Economics, Elsevier, vol. 48(C), pages 217-229.
    13. Kesicki, Fabian, 2013. "What are the key drivers of MAC curves? A partial-equilibrium modelling approach for the UK," Energy Policy, Elsevier, vol. 58(C), pages 142-151.
    14. Van den Bergh, Kenneth & Delarue, Erik, 2015. "Quantifying CO2 abatement costs in the power sector," Energy Policy, Elsevier, vol. 80(C), pages 88-97.
    15. Ko, Fu-Kuang & Huang, Chang-Bin & Tseng, Pei-Ying & Lin, Chung-Han & Zheng, Bo-Yan & Chiu, Hsiu-Mei, 2010. "Long-term CO2 emissions reduction target and scenarios of power sector in Taiwan," Energy Policy, Elsevier, vol. 38(1), pages 288-300, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ifaei, Pouya & Tayerani Charmchi, Amir Saman & Loy-Benitez, Jorge & Yang, Rebecca Jing & Yoo, ChangKyoo, 2022. "A data-driven analytical roadmap to a sustainable 2030 in South Korea based on optimal renewable microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Van den Bergh, Kenneth & Delarue, Erik, 2015. "Quantifying CO2 abatement costs in the power sector," Energy Policy, Elsevier, vol. 80(C), pages 88-97.
    2. Kejia Yang & Yalin Lei, 2017. "The carbon dioxide marginal abatement cost calculation of Chinese provinces based on stochastic frontier analysis," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 85(1), pages 505-521, January.
    3. Jenny Gabriela Peña Balderrama & Thomas Alfstad & Constantinos Taliotis & Mohammad Reza Hesamzadeh & Mark Howells, 2018. "A Sketch of Bolivia’s Potential Low-Carbon Power System Configurations. The Case of Applying Carbon Taxation and Lowering Financing Costs," Energies, MDPI, vol. 11(10), pages 1-20, October.
    4. Tang, Kai & Yang, Lin & Zhang, Jianwu, 2016. "Estimating the regional total factor efficiency and pollutants’ marginal abatement costs in China: A parametric approach," Applied Energy, Elsevier, vol. 184(C), pages 230-240.
    5. Delarue, Erik & Van den Bergh, Kenneth, 2016. "Carbon mitigation in the electric power sector under cap-and-trade and renewables policies," Energy Policy, Elsevier, vol. 92(C), pages 34-44.
    6. Zhou, X. & Fan, L.W. & Zhou, P., 2015. "Marginal CO2 abatement costs: Findings from alternative shadow price estimates for Shanghai industrial sectors," Energy Policy, Elsevier, vol. 77(C), pages 109-117.
    7. Dong-Hyun Oh & JongWuk Ahn & Sinwoo Lee & Hyundo Choi, 2021. "Measuring technical inefficiency and CO2 shadow price of Korean fossil-fuel generation companies using deterministic and stochastic approaches," Energy & Environment, , vol. 32(3), pages 403-423, May.
    8. Liu, Xi & Du, Huibin & Brown, Marilyn A. & Zuo, Jian & Zhang, Ning & Rong, Qian & Mao, Guozhu, 2018. "Low-carbon technology diffusion in the decarbonization of the power sector: Policy implications," Energy Policy, Elsevier, vol. 116(C), pages 344-356.
    9. Levihn, Fabian, 2016. "On the problem of optimizing through least cost per unit, when costs are negative: Implications for cost curves and the definition of economic efficiency," Energy, Elsevier, vol. 114(C), pages 1155-1163.
    10. Levin, Todd & Thomas, Valerie M. & Lee, Audrey J., 2011. "State-scale evaluation of renewable electricity policy: The role of renewable electricity credits and carbon taxes," Energy Policy, Elsevier, vol. 39(2), pages 950-960, February.
    11. Halkos, George & Tzeremes, Nickolaos & Kourtzidis, Stavros, 2014. "Abating CO2 emissions in the Greek energy and industry sectors," MPRA Paper 60807, University Library of Munich, Germany.
    12. Kemal Sarıca & Wallace E. Tyner, 2016. "Economic Impacts of Increased U.S. Exports of Natural Gas: An Energy System Perspective," Energies, MDPI, vol. 9(6), pages 1-16, May.
    13. Zhang, Ning & Jiang, Xue-Feng, 2019. "The effect of environmental policy on Chinese firm's green productivity and shadow price: A metafrontier input distance function approach," Technological Forecasting and Social Change, Elsevier, vol. 144(C), pages 129-136.
    14. Wei, Xiao & Zhang, Ning, 2020. "The shadow prices of CO2 and SO2 for Chinese Coal-fired Power Plants: A partial frontier approach," Energy Economics, Elsevier, vol. 85(C).
    15. Kyohei Matsushita & Kota Asano, 2014. "Reducing CO 2 emissions of Japanese thermal power companies: a directional output distance function approach," Environmental Economics and Policy Studies, Springer;Society for Environmental Economics and Policy Studies - SEEPS, vol. 16(1), pages 1-19, January.
    16. Sarica, Kemal & Tyner, Wallace E., 2013. "Alternative policy impacts on US GHG emissions and energy security: A hybrid modeling approach," Energy Economics, Elsevier, vol. 40(C), pages 40-50.
    17. Shih, Yi-Hsuan & Tseng, Chao-Heng, 2014. "Cost-benefit analysis of sustainable energy development using life-cycle co-benefits assessment and the system dynamics approach," Applied Energy, Elsevier, vol. 119(C), pages 57-66.
    18. Zhou, P. & Zhou, X. & Fan, L.W., 2014. "On estimating shadow prices of undesirable outputs with efficiency models: A literature review," Applied Energy, Elsevier, vol. 130(C), pages 799-806.
    19. Chih Chen, 2015. "Assessing the Pollutant Abatement Cost of Greenhouse Gas Emission Regulation: A Case Study of Taiwan’s Freeway Bus Service Industry," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 61(4), pages 477-495, August.
    20. Dai, Hancheng & Mischke, Peggy & Xie, Xuxuan & Xie, Yang & Masui, Toshihiko, 2016. "Closing the gap? Top-down versus bottom-up projections of China’s regional energy use and CO2 emissions," Applied Energy, Elsevier, vol. 162(C), pages 1355-1373.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:131:y:2019:i:c:p:202-214. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.