IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v129y2019icp765-773.html
   My bibliography  Save this article

Subsidizing renewables as part of taking leadership in international climate policy: The German case

Author

Listed:
  • Buchholz, Wolfgang
  • Dippl, Lisa
  • Eichenseer, Michael

Abstract

Leadership in Climate Policy is usually associated with leading by example in mitigation efforts whereas little attention has been paid to leadership in climate-friendly technological progress. We point out that pioneering activities that create reliable demand such as Germany's feed-in tariff for solar energy constitute such technological leadership. Based on global learning curves, we argue that the enormous reduction of prices for photovoltaic modules is due to demand side interventions like Germany's EEG and related international technology diffusion and policy transfer, especially to China. For the German case, we calculate that the costs of incentivizing this technological progress through the EEG add up to a range between 112.34 and 122.18 Bn Euro (based on a thought experiment of a hypothetical new entrant in 2014).

Suggested Citation

  • Buchholz, Wolfgang & Dippl, Lisa & Eichenseer, Michael, 2019. "Subsidizing renewables as part of taking leadership in international climate policy: The German case," Energy Policy, Elsevier, vol. 129(C), pages 765-773.
  • Handle: RePEc:eee:enepol:v:129:y:2019:i:c:p:765-773
    DOI: 10.1016/j.enpol.2019.02.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421519301272
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2019.02.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. repec:zbw:rwirep:0542 is not listed on IDEAS
    2. Frondel, Manuel & Ritter, Nolan & Schmidt, Christoph M. & Vance, Colin, 2010. "Economic impacts from the promotion of renewable energy technologies: The German experience," Energy Policy, Elsevier, vol. 38(8), pages 4048-4056, August.
    3. Renaud Foucart & Grégoire Garsous, 2018. "Climate Change Mitigation with Technology Spillovers," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 71(2), pages 507-527, October.
    4. Kenneth Arrow, 1962. "Economic Welfare and the Allocation of Resources for Invention," NBER Chapters, in: The Rate and Direction of Inventive Activity: Economic and Social Factors, pages 609-626, National Bureau of Economic Research, Inc.
    5. Manuel Frondel & Stephan Sommer & Colin Vance, 2015. "The burden of Germanyùs energy transition: An empirical analysis of distributional effects," Economic Analysis and Policy, Elsevier, vol. 45(c), pages 89-99.
    6. Pegels, Anna & Lütkenhorst, Wilfried, 2014. "Is Germany׳s energy transition a case of successful green industrial policy? Contrasting wind and solar PV," Energy Policy, Elsevier, vol. 74(C), pages 522-534.
    7. Röpke, Luise, 2013. "The development of renewable energies and supply security: A trade-off analysis," Energy Policy, Elsevier, vol. 61(C), pages 1011-1021.
    8. Wolfgang Buchholz & Lisa Dippl & Michael Eichenseer, 2017. "Technological Transfers in Global Climate Policy — A Strategic Perspective," World Scientific Book Chapters, in: Anil Markandya & Ibon Galarraga & Dirk Rübbelke (ed.), Climate Finance Theory and Practice, chapter 12, pages 271-295, World Scientific Publishing Co. Pte. Ltd..
    9. Peinhardt, Clint & Sandler, Todd, 2015. "Transnational Cooperation: An Issue-Based Approach," OUP Catalogue, Oxford University Press, number 9780199398614.
    10. de la Tour, Arnaud & Glachant, Matthieu & Ménière, Yann, 2011. "Innovation and international technology transfer: The case of the Chinese photovoltaic industry," Energy Policy, Elsevier, vol. 39(2), pages 761-770, February.
    11. Neij, Lena, 1997. "Use of experience curves to analyse the prospects for diffusion and adoption of renewable energy technology," Energy Policy, Elsevier, vol. 25(13), pages 1099-1107, November.
    12. de La Tour, Arnaud & Glachant, Matthieu & Ménière, Yann, 2013. "Predicting the costs of photovoltaic solar modules in 2020 using experience curve models," Energy, Elsevier, vol. 62(C), pages 341-348.
    13. Paul L. Joskow, 2011. "Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies," American Economic Review, American Economic Association, vol. 101(3), pages 238-241, May.
    14. Nemet, Gregory F., 2006. "Beyond the learning curve: factors influencing cost reductions in photovoltaics," Energy Policy, Elsevier, vol. 34(17), pages 3218-3232, November.
    15. Stram, Bruce N., 2016. "Key challenges to expanding renewable energy," Energy Policy, Elsevier, vol. 96(C), pages 728-734.
    16. Sinn, Hans-Werner, 2012. "The Green Paradox: A Supply-Side Approach to Global Warming," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262016680, December.
    17. Rubin, Edward S. & Azevedo, Inês M.L. & Jaramillo, Paulina & Yeh, Sonia, 2015. "A review of learning rates for electricity supply technologies," Energy Policy, Elsevier, vol. 86(C), pages 198-218.
    18. Joas, Fabian & Pahle, Michael & Flachsland, Christian & Joas, Amani, 2016. "Which goals are driving the Energiewende? Making sense of the German Energy Transformation," Energy Policy, Elsevier, vol. 95(C), pages 42-51.
    19. Liu, Jialu & Goldstein, Don, 2013. "Understanding China's renewable energy technology exports," Energy Policy, Elsevier, vol. 52(C), pages 417-428.
    20. Tobias S. Schmidt & Sebastian Sewerin, 2017. "Technology as a driver of climate and energy politics," Nature Energy, Nature, vol. 2(6), pages 1-3, June.
    21. Grubb,Michael & Jamasb,Tooraj & Pollitt,Michael G. (ed.), 2008. "Delivering a Low Carbon Electricity System," Cambridge Books, Cambridge University Press, number 9780521888844.
    22. Zhang, Fang & Gallagher, Kelly Sims, 2016. "Innovation and technology transfer through global value chains: Evidence from China's PV industry," Energy Policy, Elsevier, vol. 94(C), pages 191-203.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Shengqing Xu, 2023. "China’s climate governance for carbon neutrality: regulatory gaps and the ways forward," Palgrave Communications, Palgrave Macmillan, vol. 10(1), pages 1-10, December.
    2. Kristina Govorukha & Philip Mayer & Dirk Rübbelke, 2021. "Fragmented Landscape of European Policies in the Energy Sector: First-Mover Advantages," CESifo Working Paper Series 9093, CESifo.
    3. Zofia Gródek-Szostak & Małgorzata Luc & Anna Szeląg-Sikora & Jakub Sikora & Marcin Niemiec & Luis Ochoa Siguencia & Emil Velinov, 2020. "Promotion of RES in a Technology Transfer Network. Case Study of the Enterprise Europe Network," Energies, MDPI, vol. 13(13), pages 1-13, July.
    4. Gaoyuan Xu & Xiaojing Wang, 2022. "Research on the Electricity Market Clearing Model for Renewable Energy," Energies, MDPI, vol. 15(23), pages 1-16, December.
    5. Lars Mewes & Leonie Tuitjer & Peter Dirksmeier, 2024. "Exploring the variances of climate change opinions in Germany at a fine-grained local scale," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    6. Nuñez-Jimenez, Alejandro & Knoeri, Christof & Hoppmann, Joern & Hoffmann, Volker H., 2022. "Beyond innovation and deployment: Modeling the impact of technology-push and demand-pull policies in Germany's solar policy mix," Research Policy, Elsevier, vol. 51(10).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Samadi, Sascha, 2018. "The experience curve theory and its application in the field of electricity generation technologies – A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2346-2364.
    2. Strupeit, Lars, 2017. "An innovation system perspective on the drivers of soft cost reduction for photovoltaic deployment: The case of Germany," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 273-286.
    3. Mauleón, Ignacio, 2016. "Photovoltaic learning rate estimation: Issues and implications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 507-524.
    4. Reinhard Haas & Marlene Sayer & Amela Ajanovic & Hans Auer, 2023. "Technological learning: Lessons learned on energy technologies," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 12(2), March.
    5. Grafström, Jonas & Poudineh, Rahmat, 2021. "A review of problems associated with learning curves for solar and wind power technologies," Ratio Working Papers 347, The Ratio Institute.
    6. Lafond, François & Bailey, Aimee Gotway & Bakker, Jan David & Rebois, Dylan & Zadourian, Rubina & McSharry, Patrick & Farmer, J. Doyne, 2018. "How well do experience curves predict technological progress? A method for making distributional forecasts," Technological Forecasting and Social Change, Elsevier, vol. 128(C), pages 104-117.
    7. Dehler-Holland, Joris & Schumacher, Kira & Fichtner, Wolf, 2021. "Topic Modeling Uncovers Shifts in Media Framing of the German Renewable Energy Act," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 2(1).
    8. Gawel, Erik & Lehmann, Paul & Purkus, Alexandra & Söderholm, Patrik & Witte, Katherina, 2017. "Rationales for technology-specific RES support and their relevance for German policy," Energy Policy, Elsevier, vol. 102(C), pages 16-26.
    9. Chiara Modanese & Hannu S. Laine & Toni P. Pasanen & Hele Savin & Joshua M. Pearce, 2018. "Economic Advantages of Dry-Etched Black Silicon in Passivated Emitter Rear Cell (PERC) Photovoltaic Manufacturing," Energies, MDPI, vol. 11(9), pages 1-18, September.
    10. Taghizadeh-Hesary, Farhad & Yoshino, Naoyuki & Inagaki, Yugo & Morgan, Peter J., 2021. "Analyzing the factors influencing the demand and supply of solar modules in Japan – Does financing matter," International Review of Economics & Finance, Elsevier, vol. 74(C), pages 1-12.
    11. Nemet, Gregory F. & Lu, Jiaqi & Rai, Varun & Rao, Rohan, 2020. "Knowledge spillovers between PV installers can reduce the cost of installing solar PV," Energy Policy, Elsevier, vol. 144(C).
    12. Tibebu, Tiruwork B. & Hittinger, Eric & Miao, Qing & Williams, Eric, 2021. "What is the optimal subsidy for residential solar?," Energy Policy, Elsevier, vol. 155(C).
    13. De Cian, Enrica & Buhl, Johannes & Carrara, Samuel & Michela Bevione, Michela & Monetti, Silvia & Berg, Holger, 2016. "Knowledge Creation between Integrated Assessment Models and Initiative-Based Learning - An Interdisciplinary Approach," MITP: Mitigation, Innovation and Transformation Pathways 249784, Fondazione Eni Enrico Mattei (FEEM).
    14. Ogura, Yasuhiro, 2020. "Policy as a “porter” of RE component export or import? Evidence from PV/wind energy in OECD and BRICS," Energy Economics, Elsevier, vol. 86(C).
    15. Lehmann, Paul & Gawel, Erik, 2013. "Why should support schemes for renewable electricity complement the EU emissions trading scheme?," Energy Policy, Elsevier, vol. 52(C), pages 597-607.
    16. Sommerfeldt, Nelson & Madani, Hatef, 2017. "Revisiting the techno-economic analysis process for building-mounted, grid-connected solar photovoltaic systems: Part one – Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1379-1393.
    17. Gan, Peck Yean & Li, ZhiDong, 2015. "Quantitative study on long term global solar photovoltaic market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 46(C), pages 88-99.
    18. Paul Kerr & Donald R. Noble & Jonathan Hodges & Henry Jeffrey, 2021. "Implementing Radical Innovation in Renewable Energy Experience Curves," Energies, MDPI, vol. 14(9), pages 1-28, April.
    19. Kavlak, Goksin & McNerney, James & Trancik, Jessika E., 2018. "Evaluating the causes of cost reduction in photovoltaic modules," Energy Policy, Elsevier, vol. 123(C), pages 700-710.
    20. Sascha Samadi, 2016. "A Review of Factors Influencing the Cost Development of Electricity Generation Technologies," Energies, MDPI, vol. 9(11), pages 1-25, November.

    More about this item

    Keywords

    Leadership; Climate change; Solar photovoltaic; Subsidies; Feed-intariffs; Ambition;
    All these keywords.

    JEL classification:

    • Q55 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Environmental Economics - - - Environmental Economics: Technological Innovation
    • F53 - International Economics - - International Relations, National Security, and International Political Economy - - - International Agreements and Observance; International Organizations
    • O33 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Technological Change: Choices and Consequences; Diffusion Processes
    • O38 - Economic Development, Innovation, Technological Change, and Growth - - Innovation; Research and Development; Technological Change; Intellectual Property Rights - - - Government Policy
    • H41 - Public Economics - - Publicly Provided Goods - - - Public Goods

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:129:y:2019:i:c:p:765-773. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.