IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v125y2019icp456-466.html
   My bibliography  Save this article

Underground cables vs. overhead lines: Quasi-experimental evidence for the effects on public risk expectations, attitudes, and protest behavior

Author

Listed:
  • Mueller, Christoph Emanuel
  • Keil, Silke Inga
  • Bauer, Christian

Abstract

Governments and energy operators are often confronted with local residents’ protest against the construction of new high-voltage overhead transmission lines, negative risk expectations, and a lack of public support. A frequently discussed strategy for dealing with these issues is to build underground cables instead of overhead lines. So far, however, there is not much empirical evidence of whether substituting overhead lines by underground cables actually reduces protest or affects public risk expectations and attitudes. This study contributes to filling this gap by comparing residents’ risk expectations, attitudes, and protest behavior observed at two grid expansion sites in Germany by means of a quasi-experiment. At the time when the data were collected, both grid expansion projects–an overhead line project in Lower Saxony and an underground cable project in Hesse–were at the same stage of the legally defined planning and approval procedure. After controlling for various potential confounders, we obtained results revealing that there are no differences in the risk expectations, attitudes, and protest behavior of residents interviewed at the two project sites, or only marginal ones. Hence, our findings do not support the assumption that building underground cables necessarily improves the situation with regard to risk expectations, attitudes, and protest behavior.

Suggested Citation

  • Mueller, Christoph Emanuel & Keil, Silke Inga & Bauer, Christian, 2019. "Underground cables vs. overhead lines: Quasi-experimental evidence for the effects on public risk expectations, attitudes, and protest behavior," Energy Policy, Elsevier, vol. 125(C), pages 456-466.
  • Handle: RePEc:eee:enepol:v:125:y:2019:i:c:p:456-466
    DOI: 10.1016/j.enpol.2018.10.053
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518307079
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.10.053?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John C. Whitehead & Glenn C. Blomquist, 2006. "The Use of Contingent Valuation in Benefit–Cost Analysis," Chapters, in: Anna Alberini & James R. Kahn (ed.), Handbook on Contingent Valuation, chapter 4, Edward Elgar Publishing.
    2. Bertsch, Valentin & Hall, Margeret & Weinhardt, Christof & Fichtner, Wolf, 2016. "Public acceptance and preferences related to renewable energy and grid expansion policy: Empirical insights for Germany," Energy, Elsevier, vol. 114(C), pages 465-477.
    3. Anna Alberini & James R. Kahn (ed.), 2006. "Handbook on Contingent Valuation," Books, Edward Elgar Publishing, number 1893.
    4. van der Horst, Dan, 2007. "NIMBY or not? Exploring the relevance of location and the politics of voiced opinions in renewable energy siting controversies," Energy Policy, Elsevier, vol. 35(5), pages 2705-2714, May.
    5. Vajjhala, Shalini P. & Fischbeck, Paul S., 2007. "Quantifying siting difficulty: A case study of US transmission line siting," Energy Policy, Elsevier, vol. 35(1), pages 650-671, January.
    6. Wustenhagen, Rolf & Wolsink, Maarten & Burer, Mary Jean, 2007. "Social acceptance of renewable energy innovation: An introduction to the concept," Energy Policy, Elsevier, vol. 35(5), pages 2683-2691, May.
    7. Detlof Von Winterfeldt & Thomas Eppel & John Adams & Raymond Neutra & Vincent DelPizzo, 2004. "Managing Potential Health Risks from Electric Powerlines: A Decision Analysis Caught in Controversy," Risk Analysis, John Wiley & Sons, vol. 24(6), pages 1487-1502, December.
    8. Mueller, Christoph Emanuel & Keil, Silke Inga & Bauer, Christian, 2017. "Effects of spatial proximity to proposed high-voltage transmission lines: Evidence from a natural experiment in Lower Saxony," Energy Policy, Elsevier, vol. 111(C), pages 137-147.
    9. Paul Slovic & Melissa L. Finucane & Ellen Peters & Donald G. MacGregor, 2004. "Risk as Analysis and Risk as Feelings: Some Thoughts about Affect, Reason, Risk, and Rationality," Risk Analysis, John Wiley & Sons, vol. 24(2), pages 311-322, April.
    10. Buijs, Patrik & Bekaert, David & Cole, Stijn & Van Hertem, Dirk & Belmans, Ronnie, 2011. "Transmission investment problems in Europe: Going beyond standard solutions," Energy Policy, Elsevier, vol. 39(3), pages 1794-1801, March.
    11. Wolsink, Maarten, 2000. "Wind power and the NIMBY-myth: institutional capacity and the limited significance of public support," Renewable Energy, Elsevier, vol. 21(1), pages 49-64.
    12. Francois Des Rosiers, 2002. "Power Lines, Visual Encumbrance and House Values: A Microspatial Approach to Impact Measurement," Journal of Real Estate Research, American Real Estate Society, vol. 23(3), pages 275-302.
    13. Zoellner, Jan & Schweizer-Ries, Petra & Wemheuer, Christin, 2008. "Public acceptance of renewable energies: Results from case studies in Germany," Energy Policy, Elsevier, vol. 36(11), pages 4136-4141, November.
    14. McNair, Ben J. & Bennett, Jeff & Hensher, David A. & Rose, John M., 2011. "Households' willingness to pay for overhead-to-underground conversion of electricity distribution networks," Energy Policy, Elsevier, vol. 39(5), pages 2560-2567, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mueller, Christoph Emanuel, 2020. "Examining the inter-relationships between procedural fairness, trust in actors, risk expectations, perceived benefits, and attitudes towards power grid expansion projects," Energy Policy, Elsevier, vol. 141(C).
    2. Ardelean, Mircea & Minnebo, Philip, 2023. "The suitability of seas and shores for building submarine power interconnections," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).
    3. Kim, Hyunggeun & Park, Sangkyu & Lee, Jongsu, 2021. "Is renewable energy acceptable with power grid expansion? A quantitative study of South Korea's renewable energy acceptance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Romuald Masnicki & Janusz Mindykowski & Beata Palczynska, 2022. "Experiment-Based Study of Heat Dissipation from the Power Cable in a Casing Pipe," Energies, MDPI, vol. 15(13), pages 1-16, June.
    5. Mueller, Christoph Emanuel, 2020. "Why do residents participate in high-voltage transmission line planning procedures? Findings from two power grid expansion regions in Germany," Energy Policy, Elsevier, vol. 145(C).
    6. Simon Fink & Eva Ruffing & Tobias Burst & Sara Katharina Chinnow, 2023. "Emotional citizens, detached interest groups? The use of emotional language in public policy consultations," Policy Sciences, Springer;Society of Policy Sciences, vol. 56(3), pages 469-497, September.
    7. Matej Tazky & Michal Regula & Alena Otcenasova, 2021. "Impact of Changes in a Distribution Network Nature on the Capacitive Reactive Power Flow into the Transmission Network in Slovakia," Energies, MDPI, vol. 14(17), pages 1-16, August.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mueller, Christoph Emanuel, 2020. "Examining the inter-relationships between procedural fairness, trust in actors, risk expectations, perceived benefits, and attitudes towards power grid expansion projects," Energy Policy, Elsevier, vol. 141(C).
    2. Schumacher, K. & Krones, F. & McKenna, R. & Schultmann, F., 2019. "Public acceptance of renewable energies and energy autonomy: A comparative study in the French, German and Swiss Upper Rhine region," Energy Policy, Elsevier, vol. 126(C), pages 315-332.
    3. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    4. Zerrahn, Alexander, 2017. "Wind Power and Externalities," Ecological Economics, Elsevier, vol. 141(C), pages 245-260.
    5. Bertsch, Valentin & Hyland, Marie & Mahony, Michael, 2017. "What drives people's opinions of electricity infrastructure? Empirical evidence from Ireland," Energy Policy, Elsevier, vol. 106(C), pages 472-497.
    6. Astrid Buchmayr & Luc Van Ootegem & Jo Dewulf & Elsy Verhofstadt, 2021. "Understanding Attitudes towards Renewable Energy Technologies and the Effect of Local Experiences," Energies, MDPI, vol. 14(22), pages 1-23, November.
    7. Hyland, Marie & Bertsch, Valentin, 2018. "The Role of Community Involvement Mechanisms in Reducing Resistance to Energy Infrastructure Development," Ecological Economics, Elsevier, vol. 146(C), pages 447-474.
    8. Sharpton, Tara & Lawrence, Thomas & Hall, Margeret, 2020. "Drivers and barriers to public acceptance of future energy sources and grid expansion in the United States," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    9. Koecklin, Manuel Tong & Longoria, Genaro & Fitiwi, Desta Z. & DeCarolis, Joseph F. & Curtis, John, 2021. "Public acceptance of renewable electricity generation and transmission network developments: Insights from Ireland," Energy Policy, Elsevier, vol. 151(C).
    10. Kontogianni, A. & Tourkolias, Ch. & Skourtos, M. & Damigos, D., 2014. "Planning globally, protesting locally: Patterns in community perceptions towards the installation of wind farms," Renewable Energy, Elsevier, vol. 66(C), pages 170-177.
    11. Mueller, Christoph Emanuel, 2020. "Why do residents participate in high-voltage transmission line planning procedures? Findings from two power grid expansion regions in Germany," Energy Policy, Elsevier, vol. 145(C).
    12. Nelson, Hal T. & Wikstrom, Kris & Hass, Samantha & Sarle, Kirsten, 2021. "Half-length and the FACT framework: Distance-decay and citizen opposition to energy facilities," Land Use Policy, Elsevier, vol. 101(C).
    13. Bauwens, Thomas & Devine-Wright, Patrick, 2018. "Positive energies? An empirical study of community energy participation and attitudes to renewable energy," Energy Policy, Elsevier, vol. 118(C), pages 612-625.
    14. Fitiwi, Desta Z. & Lynch, Muireann & Bertsch, Valentin, 2020. "Power system impacts of community acceptance policies for renewable energy deployment under storage cost uncertainty," Renewable Energy, Elsevier, vol. 156(C), pages 893-912.
    15. Baek, Haein & Chung, Ji-Bum & Yun, Gi Woong, 2021. "Differences in public perceptions of geothermal energy based on EGS technology in Korea after the Pohang earthquake: National vs. local," Technological Forecasting and Social Change, Elsevier, vol. 172(C).
    16. Mueller, Christoph Emanuel & Keil, Silke Inga & Bauer, Christian, 2017. "Effects of spatial proximity to proposed high-voltage transmission lines: Evidence from a natural experiment in Lower Saxony," Energy Policy, Elsevier, vol. 111(C), pages 137-147.
    17. Marco Segreto & Lucas Principe & Alexandra Desormeaux & Marco Torre & Laura Tomassetti & Patrizio Tratzi & Valerio Paolini & Francesco Petracchini, 2020. "Trends in Social Acceptance of Renewable Energy Across Europe—A Literature Review," IJERPH, MDPI, vol. 17(24), pages 1-19, December.
    18. Ali Arababadi & Stephan Leyer & Joachim Hansen & Reza Arababadi & Gloria Pignatta, 2021. "Characterizing the Theory of Energy Transition in Luxembourg, Part Two—On Energy Enthusiasts’ Viewpoints," Sustainability, MDPI, vol. 13(21), pages 1-18, November.
    19. Windemer, Rebecca, 2023. "Acceptance should not be assumed. How the dynamics of social acceptance changes over time, impacting onshore wind repowering," Energy Policy, Elsevier, vol. 173(C).
    20. Jason Harold, Valentin Bertsch, Thomas Lawrence, and Magie Hall, 2021. "Drivers of People's Preferences for Spatial Proximity to Energy Infrastructure Technologies: A Cross-country Analysis," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:125:y:2019:i:c:p:456-466. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.