IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v125y2019icp154-159.html
   My bibliography  Save this article

Portfolio analysis and geographical allocation of renewable sources: A stochastic approach

Author

Listed:
  • Scala, Antonio
  • Facchini, Angelo
  • Perna, Umberto
  • Basosi, Riccardo

Abstract

We take inspiration from the Modern Portfolio Theory introduced by Markowitz to propose a simplified strategy for the portfolio management of renewable energy sources based on Gaussian fluctuations with tunable correlations. By analyzing the impact of production fluctuations, we show how – depending on the sources' temporal correlation patterns – a careful geographical allocation of different types of renewal energy sources can reduce both the energy needs for balancing the power system and its uncertainty. The proposed strategy can be easily integrated in a decision support system for the planning of renewable energy sources. Therefore, providing policy/decision makers with an additional tool. We test our strategy on a set of case studies including a real-case based on literature data for solar and wind sources, and discuss how to extend the computation to non-Gaussian sources. The paper shows that in the Markowitz framework an efficient trade-off between production and fluctuations can be easily achieved, and that such framework also leads to important considerations on energy security. In perspective, analysis of time series together with such enriched frameworks would allow for the analysis of multiple realistic renewable generation scenarios helping decisions on the optimal size and spatial allocation of future energy storage facilities.

Suggested Citation

  • Scala, Antonio & Facchini, Angelo & Perna, Umberto & Basosi, Riccardo, 2019. "Portfolio analysis and geographical allocation of renewable sources: A stochastic approach," Energy Policy, Elsevier, vol. 125(C), pages 154-159.
  • Handle: RePEc:eee:enepol:v:125:y:2019:i:c:p:154-159
    DOI: 10.1016/j.enpol.2018.10.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0301421518306888
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2018.10.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Weitemeyer, Stefan & Kleinhans, David & Vogt, Thomas & Agert, Carsten, 2015. "Integration of Renewable Energy Sources in future power systems: The role of storage," Renewable Energy, Elsevier, vol. 75(C), pages 14-20.
    2. Angelo Facchini, 2017. "Distributed energy resources: Planning for the future," Nature Energy, Nature, vol. 2(8), pages 1-2, August.
    3. Roques, Fabien A. & Newbery, David M. & Nuttall, William J., 2008. "Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach," Energy Economics, Elsevier, vol. 30(4), pages 1831-1849, July.
    4. Kruyt, Bert & van Vuuren, D.P. & de Vries, H.J.M. & Groenenberg, H., 2009. "Indicators for energy security," Energy Policy, Elsevier, vol. 37(6), pages 2166-2181, June.
    5. Sunderkötter, Malte & Weber, Christoph, 2012. "Valuing fuel diversification in power generation capacity planning," Energy Economics, Elsevier, vol. 34(5), pages 1664-1674.
    6. Bhattacharya, Anindya & Kojima, Satoshi, 2012. "Power sector investment risk and renewable energy: A Japanese case study using portfolio risk optimization method," Energy Policy, Elsevier, vol. 40(C), pages 69-80.
    7. Saman Korjani & Mario Mureddu & Angelo Facchini & Alfonso Damiano, 2017. "Aging Cost Optimization for Planning and Management of Energy Storage Systems," Energies, MDPI, vol. 10(11), pages 1-17, November.
    8. Mario Mureddu & Guido Caldarelli & Alessandro Chessa & Antonio Scala & Alfonso Damiano, 2015. "Green Power Grids: How Energy from Renewable Sources Affects Networks and Markets," PLOS ONE, Public Library of Science, vol. 10(9), pages 1-15, September.
    9. Friedrich Kunz, 2013. "Improving Congestion Management: How to Facilitate the Integration of Renewable Generation in Germany," The Energy Journal, International Association for Energy Economics, vol. 0(Number 4).
    10. Iain D. Stewart & Chris A. Kennedy & Angelo Facchini & Renata Mele, 2018. "The Electric City as a Solution to Sustainable Urban Development," Journal of Urban Technology, Taylor & Francis Journals, vol. 25(1), pages 3-20, January.
    11. Kennedy, Chris & Stewart, Iain D. & Facchini, Angelo & Mele, Renata, 2017. "The role of utilities in developing low carbon, electric megacities," Energy Policy, Elsevier, vol. 106(C), pages 122-128.
    12. deLlano-Paz, Fernando & Calvo-Silvosa, Anxo & Antelo, Susana Iglesias & Soares, Isabel, 2017. "Energy planning and modern portfolio theory: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 636-651.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carina Fagefors & Björn Lantz, 2021. "Application of Portfolio Theory to Healthcare Capacity Management," IJERPH, MDPI, vol. 18(2), pages 1-9, January.
    2. Castro, Gabriel Malta & Klöckl, Claude & Regner, Peter & Schmidt, Johannes & Pereira, Amaro Olimpio, 2022. "Improvements to Modern Portfolio Theory based models applied to electricity systems," Energy Economics, Elsevier, vol. 111(C).
    3. Gabriel Malta Castro & Claude Klockl & Peter Regner & Johannes Schmidt & Amaro Olimpio Pereira Jr, 2021. "Improvements to Modern Portfolio Theory based models applied to electricity systems," Papers 2105.08182, arXiv.org.
    4. Michaela Makešová & Michaela Valentová, 2021. "The Concept of Multiple Impacts of Renewable Energy Sources: A Critical Review," Energies, MDPI, vol. 14(11), pages 1-21, May.
    5. Kaiqiang An & Guiyu Zhao & Jinjun Li & Jingsong Tian & Lihua Wang & Liang Xian & Chen Chen, 2023. "Best-Case Scenario Robust Portfolio: Evidence from China Stock Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 30(2), pages 297-322, June.
    6. Kashanian, Motahareh & Pishvaee, Mir Saman & Sahebi, Hadi, 2020. "Sustainable biomass portfolio sourcing plan using multi-stage stochastic programming," Energy, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inzunza, Andrés & Muñoz, Francisco D. & Moreno, Rodrigo, 2021. "Measuring the effects of environmental policies on electricity markets risk," Energy Economics, Elsevier, vol. 102(C).
    2. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "Energy security and improvements in the function of diversity indices—Taiwan energy supply structure case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 9-20.
    3. Pérez Odeh, Rodrigo & Watts, David & Negrete-Pincetic, Matías, 2018. "Portfolio applications in electricity markets review: Private investor and manager perspective trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 192-204.
    4. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2019. "Assessing Renewable Energy Sources for Electricity (RES-E) Potential Using a CAPM-Analogous Multi-Stage Model," Energies, MDPI, vol. 12(19), pages 1-20, September.
    5. Paulino Martinez-Fernandez & Fernando deLlano-Paz & Anxo Calvo-Silvosa & Isabel Soares, 2018. "Pollutant versus non-pollutant generation technologies: a CML-analogous analysis," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 20(1), pages 199-212, December.
    6. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    7. Tietjen, Oliver & Pahle, Michael & Fuss, Sabine, 2016. "Investment risks in power generation: A comparison of fossil fuel and renewable energy dominated markets," Energy Economics, Elsevier, vol. 58(C), pages 174-185.
    8. Frank A. Wolak, 2016. "Level versus Variability Trade-offs in Wind and Solar Generation Investments: The Case of California," NBER Working Papers 22494, National Bureau of Economic Research, Inc.
    9. Botor, Benjamin & Böcker, Benjamin & Kallabis, Thomas & Weber, Christoph, 2021. "Information shocks and profitability risks for power plant investments – impacts of policy instruments," Energy Economics, Elsevier, vol. 102(C).
    10. de-Llano Paz, Fernando & Antelo, Susana Iglesias & Calvo Silvosa, Anxo & Soares, Isabel, 2014. "The technological and environmental efficiency of the EU-27 power mix: An evaluation based on MPT," Energy, Elsevier, vol. 69(C), pages 67-81.
    11. Russo, Marianna & Bertsch, Valentin, 2020. "A looming revolution: Implications of self-generation for the risk exposure of retailers," Energy Economics, Elsevier, vol. 92(C).
    12. Ioannou, Anastasia & Angus, Andrew & Brennan, Feargal, 2017. "Risk-based methods for sustainable energy system planning: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 602-615.
    13. deLlano-Paz, Fernando & Martínez Fernandez, Paulino & Soares, Isabel, 2016. "Addressing 2030 EU policy framework for energy and climate: Cost, risk and energy security issues," Energy, Elsevier, vol. 115(P2), pages 1347-1360.
    14. Fernando deLlano-Paz & Paulino Martinez Fernandez & Isabel Soares, 2016. "The effects of different CCS technological scenarios on EU low-carbon generation mix," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 18(5), pages 1477-1500, October.
    15. Zhang, Shuang & Zhao, Tao & Xie, Bai-Chen, 2018. "What is the optimal power generation mix of China? An empirical analysis using portfolio theory," Applied Energy, Elsevier, vol. 229(C), pages 522-536.
    16. Inzunza, Andrés & Moreno, Rodrigo & Bernales, Alejandro & Rudnick, Hugh, 2016. "CVaR constrained planning of renewable generation with consideration of system inertial response, reserve services and demand participation," Energy Economics, Elsevier, vol. 59(C), pages 104-117.
    17. David Juárez-Luna, 2021. "Power generation portfolios: A parametric formulation of the efficient frontier," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-29, Enero - M.
    18. Vithayasrichareon, Peerapat & Riesz, Jenny & MacGill, Iain F., 2015. "Using renewables to hedge against future electricity industry uncertainties—An Australian case study," Energy Policy, Elsevier, vol. 76(C), pages 43-56.
    19. Chuang, Ming Chih & Ma, Hwong Wen, 2013. "An assessment of Taiwan’s energy policy using multi-dimensional energy security indicators," Renewable and Sustainable Energy Reviews, Elsevier, vol. 17(C), pages 301-311.
    20. Lado-Sestayo, Rubén & De Llano-Paz, Fernando & Vivel-Búa, Milagros & Martínez-Salgueiro, Andrea, 2023. "Commodity exposure in the eurozone: How EU energy security is conditioned by the Euro," Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:125:y:2019:i:c:p:154-159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.