IDEAS home Printed from https://ideas.repec.org/a/eee/enepol/v114y2018icp403-412.html
   My bibliography  Save this article

A discussion on China's vehicle fuel policy: Based on the development route optimization of refining industry

Author

Listed:
  • Pan, Lingying
  • Liu, Pei
  • Li, Zheng

Abstract

In recent years, Chinese government has been accelerating the implementation of high-quality standard of petroleum products. National Standard V of gasoline and diesel will be put into effect by 2018. However, as most of the gasoline and diesel are supplied by domestic refineries, whether the domestic refineries are capable to produce National Standard V products remains a question. This paper develops a mix integer programming model for long-term development route of refining industry in China from 2015 to 2050. The model provides optimal route of refinery construction, upgrading and retirement under different scenarios. Three scenarios are designed to discuss the mutual influence between long-term development of refining industry and fuel quality standard implementation. In the three scenarios, the schedule of 100%-National-Standard-V refining capacity target should be realized by 2018, 2030 and 2040 respectively. Based on the modeling results, we conclude that the 100%-National-Standard-V target by 2018 is difficult to realize. Putting off the schedule to 2030 is more practical in consideration of the current situation in China. To realize the 2030 target, extra investment for building new refineries and upgrading existing ones is needed in short term. However, impulse investment will result in over-capacity problem in the future.

Suggested Citation

  • Pan, Lingying & Liu, Pei & Li, Zheng, 2018. "A discussion on China's vehicle fuel policy: Based on the development route optimization of refining industry," Energy Policy, Elsevier, vol. 114(C), pages 403-412.
  • Handle: RePEc:eee:enepol:v:114:y:2018:i:c:p:403-412
    DOI: 10.1016/j.enpol.2017.12.010
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S030142151730825X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.enpol.2017.12.010?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Jian & Li, Yan & Gu, Chun-wei & Zhang, Li, 2014. "Thermodynamic analysis and performance optimization of an ORC (Organic Rankine Cycle) system for multi-strand waste heat sources in petroleum refining industry," Energy, Elsevier, vol. 71(C), pages 673-680.
    2. W. David Walls & Frank W. Rusco, 2007. "Price Effects of Boutique Motor Fuels: Federal Environmental Standards, Regional Fuel Choices, and Local Gasoline Prices," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 145-164.
    3. de Barros, Marisa Maia & Szklo, Alexandre, 2015. "Petroleum refining flexibility and cost to address the risk of ethanol supply disruptions: The case of Brazil," Renewable Energy, Elsevier, vol. 77(C), pages 20-31.
    4. Walls, W.D., 2010. "Petroleum refining industry in China," Energy Policy, Elsevier, vol. 38(5), pages 2110-2115, May.
    5. Yue, Xin & Wu, Ye & Hao, Jiming & Pang, Yuan & Ma, Yao & Li, Yi & Li, Boshi & Bao, Xiaofeng, 2015. "Fuel quality management versus vehicle emission control in China, status quo and future perspectives," Energy Policy, Elsevier, vol. 79(C), pages 87-98.
    6. Ke, Wenwei & Zhang, Shaojun & He, Xiaoyi & Wu, Ye & Hao, Jiming, 2017. "Well-to-wheels energy consumption and emissions of electric vehicles: Mid-term implications from real-world features and air pollution control progress," Applied Energy, Elsevier, vol. 188(C), pages 367-377.
    7. Xie, Xuan & Shao, Shuai & Lin, Boqiang, 2016. "Exploring the driving forces and mitigation pathways of CO2 emissions in China’s petroleum refining and coking industry: 1995–2031," Applied Energy, Elsevier, vol. 184(C), pages 1004-1015.
    8. Liu, Xiaoyu & Chen, Dingjiang & Zhang, Wenjun & Qin, Weizhong & Zhou, Wenji & Qiu, Tong & Zhu, Bing, 2013. "An assessment of the energy-saving potential in China's petroleum refining industry from a technical perspective," Energy, Elsevier, vol. 59(C), pages 38-49.
    9. Hofmann, Jana & Guan, Dabo & Chalvatzis, Konstantinos & Huo, Hong, 2016. "Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China," Applied Energy, Elsevier, vol. 184(C), pages 995-1003.
    10. Wang, Hailin & Ou, Xunmin & Zhang, Xiliang, 2017. "Mode, technology, energy consumption, and resulting CO2 emissions in China's transport sector up to 2050," Energy Policy, Elsevier, vol. 109(C), pages 719-733.
    11. Liu, Haiyan & Yu, Jianning & Xu, Jian & Fan, Yu & Bao, Xiaojun, 2007. "Identification of key oil refining technologies for China National Petroleum Co. (CNPC)," Energy Policy, Elsevier, vol. 35(4), pages 2635-2647, April.
    12. Guy C.K. Leung & Raymond Li & W.D. Walls, 2012. "Transitions in the Chinese market for refined petroleum products," OPEC Energy Review, Organization of the Petroleum Exporting Countries, vol. 36(3), pages 349-373, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pan, Lingying & Liu, Pei & Li, Zheng, 2017. "A system dynamic analysis of China’s oil supply chain: Over-capacity and energy security issues," Applied Energy, Elsevier, vol. 188(C), pages 508-520.
    2. Xi Yang & Xiaoqian Xi & Shan Guo & Wanqi Lin & Xiangzhao Feng, 2018. "Carbon Mitigation Pathway Evaluation and Environmental Benefit Analysis of Mitigation Technologies in China’s Petrochemical and Chemical Industry," Energies, MDPI, vol. 11(12), pages 1-25, November.
    3. Ruyu Xie & Liren An & Nosheena Yasir, 2022. "How Innovative Characteristics Influence Consumers’ Intention to Purchase Electric Vehicle: A Moderating Role of Lifestyle," Sustainability, MDPI, vol. 14(8), pages 1-24, April.
    4. Kalghatgi, Gautam, 2018. "Is it really the end of internal combustion engines and petroleum in transport?," Applied Energy, Elsevier, vol. 225(C), pages 965-974.
    5. Lin, Boqiang & Wu, Wei, 2021. "The impact of electric vehicle penetration: A recursive dynamic CGE analysis of China," Energy Economics, Elsevier, vol. 94(C).
    6. Zhou, Xi-Yin & Xu, Zhicheng & Zheng, Jialin & Zhou, Ya & Lei, Kun & Fu, Jiafeng & Khu, Soon-Thiam & Yang, Junfeng, 2023. "Internal spillover effect of carbon emission between transportation sectors and electricity generation sectors," Renewable Energy, Elsevier, vol. 208(C), pages 356-366.
    7. Yang, Tianqi & Shu, Yun & Zhang, Shaohui & Wang, Hongchang & Zhu, Jinwei & Wang, Fan, 2023. "Impacts of end-use electrification on air quality and CO2 emissions in China's northern cities in 2030," Energy, Elsevier, vol. 278(PA).
    8. Kain Glensor & María Rosa Muñoz B., 2019. "Life-Cycle Assessment of Brazilian Transport Biofuel and Electrification Pathways," Sustainability, MDPI, vol. 11(22), pages 1-31, November.
    9. Zhao, Chunfu & Chen, Bin, 2014. "China’s oil security from the supply chain perspective: A review," Applied Energy, Elsevier, vol. 136(C), pages 269-279.
    10. Khan, Muhammad Imran & Shahrestani, Mehdi & Hayat, Tasawar & Shakoor, Abdul & Vahdati, Maria, 2019. "Life cycle (well-to-wheel) energy and environmental assessment of natural gas as transportation fuel in Pakistan," Applied Energy, Elsevier, vol. 242(C), pages 1738-1752.
    11. Zhao, Yinan & Wen, Yifan & Wang, Fang & Tu, Wei & Zhang, Shaojun & Wu, Ye & Hao, Jiming, 2023. "Feasibility, economic and carbon reduction benefits of ride-hailing vehicle electrification by coupling travel trajectory and charging infrastructure data," Applied Energy, Elsevier, vol. 342(C).
    12. Ma, Linwei & Fu, Feng & Li, Zheng & Liu, Pei, 2012. "Oil development in China: Current status and future trends," Energy Policy, Elsevier, vol. 45(C), pages 43-53.
    13. Bu, Chujie & Cui, Xueqin & Li, Ruiyao & Li, Jin & Zhang, Yaxin & Wang, Can & Cai, Wenjia, 2021. "Achieving net-zero emissions in China’s passenger transport sector through regionally tailored mitigation strategies," Applied Energy, Elsevier, vol. 284(C).
    14. Li, Xi & Yu, Biying, 2019. "Peaking CO2 emissions for China's urban passenger transport sector," Energy Policy, Elsevier, vol. 133(C).
    15. Fernanda Guedes & Alexandre Szklo & Pedro Rochedo & Frédéric Lantz & Leticia Magalar & Eveline Maria Vásquez Arroyo, 2018. "Climate-Energy-Water Nexus in Brazilian Oil Refineries," Working Papers hal-03188594, HAL.
    16. Audoly, Richard & Vogt-Schilb, Adrien & Guivarch, Céline & Pfeiffer, Alexander, 2018. "Pathways toward zero-carbon electricity required for climate stabilization," Applied Energy, Elsevier, vol. 225(C), pages 884-901.
    17. Stephany Isabel Vallarta-Serrano & Ana Bricia Galindo-Muro & Riccardo Cespi & Rogelio Bustamante-Bello, 2023. "Analysis of GHG Emission from Cargo Vehicles in Megacities: The Case of the Metropolitan Zone of the Valley of Mexico," Energies, MDPI, vol. 16(13), pages 1-19, June.
    18. Yuan, Zhiyi & Ou, Xunmin & Peng, Tianduo & Yan, Xiaoyu, 2019. "Life cycle greenhouse gas emissions of multi-pathways natural gas vehicles in china considering methane leakage," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    19. Ziru Feng & Tian Cai & Kangli Xiang & Chenxi Xiang & Lei Hou, 2019. "Evaluating the Impact of Fossil Fuel Vehicle Exit on the Oil Demand in China," Energies, MDPI, vol. 12(14), pages 1-18, July.
    20. Shangfeng Han & Baosheng Zhang & Xiaoyang Sun & Song Han & Mikael Höök, 2017. "China’s Energy Transition in the Power and Transport Sectors from a Substitution Perspective," Energies, MDPI, vol. 10(5), pages 1-25, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:enepol:v:114:y:2018:i:c:p:403-412. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/enpol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.