IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v64y2017icp158-169.html
   My bibliography  Save this article

Robust portfolio optimization for electricity planning: An application based on the Brazilian electricity mix

Author

Listed:
  • Costa, Oswaldo L.V.
  • de Oliveira Ribeiro, Celma
  • Rego, Erik Eduardo
  • Stern, Julio Michael
  • Parente, Virginia
  • Kileber, Solange

Abstract

One of the major challenges of today's policy makers and industry strategists is to achieve an electricity mix that presents a high level of energy security within a range of affordable costs and environmental constraints. Bearing in mind the planning of a more reliable electricity mix, the main contribution of this paper is to consider parameter uncertainties on the electricity portfolio optimization problem. We assume that the expected and the covariance matrix of the costs for the different energy technologies, such as gas, coal, nuclear, oil, biomass, wind, large and small hydropower, are not exactly known. We consider that these parameters belong to some uncertainty sets (box, ellipsoidal, lower and upper bounds, and convex polytopic). Three problems are analyzed: (i) finding a energy portfolio of minimum worst case volatility with guaranteed fixed maximum expected energy cost; (ii) finding an energy portfolio of minimum worst case expected cost with guaranteed fixed maximum volatility of the energy cost; (iii) finding a combination of the expected and variance of the cost, weighted by a risk aversion parameter. These problems are written as quadratic, second order cone programming (SOCP), and semidefinite programming (SDP), so that robust optimization tools can be applied. These results are illustrated by analyzing the efficient Brazilian electricity energy mix considered in Losekann et al. (2013) assuming possible uncertainties in the vector of expected costs and covariance matrix. The results suggest that the robust approach, being by nature more conservative, can be useful in providing a reasonable electricity energy mix conciliating CO2 emission, risk and costs under uncertainties on the parameters of the model.

Suggested Citation

  • Costa, Oswaldo L.V. & de Oliveira Ribeiro, Celma & Rego, Erik Eduardo & Stern, Julio Michael & Parente, Virginia & Kileber, Solange, 2017. "Robust portfolio optimization for electricity planning: An application based on the Brazilian electricity mix," Energy Economics, Elsevier, vol. 64(C), pages 158-169.
  • Handle: RePEc:eee:eneeco:v:64:y:2017:i:c:p:158-169
    DOI: 10.1016/j.eneco.2017.03.021
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140988317300877
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.eneco.2017.03.021?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marrero, Gustavo A. & Ramos-Real, Francisco Javier, 2010. "Electricity generation cost in isolated system: The complementarities of natural gas and renewables in the Canary Islands," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2808-2818, December.
    2. Losekann, Luciano & Marrero, Gustavo A. & Ramos-Real, Francisco J. & de Almeida, Edmar Luiz Fagundes, 2013. "Efficient power generating portfolio in Brazil: Conciliating cost, emissions and risk," Energy Policy, Elsevier, vol. 62(C), pages 301-314.
    3. R.H. Tütüncü & M. Koenig, 2004. "Robust Asset Allocation," Annals of Operations Research, Springer, vol. 132(1), pages 157-187, November.
    4. Costa, O. L. V. & Paiva, A. C., 2002. "Robust portfolio selection using linear-matrix inequalities," Journal of Economic Dynamics and Control, Elsevier, vol. 26(6), pages 889-909, June.
    5. Mari, Carlo, 2014. "Hedging electricity price volatility using nuclear power," Applied Energy, Elsevier, vol. 113(C), pages 615-621.
    6. Roques, Fabien A. & Newbery, David M. & Nuttall, William J., 2008. "Fuel mix diversification incentives in liberalized electricity markets: A Mean-Variance Portfolio theory approach," Energy Economics, Elsevier, vol. 30(4), pages 1831-1849, July.
    7. Roques, Fabien & Hiroux, Céline & Saguan, Marcelo, 2010. "Optimal wind power deployment in Europe--A portfolio approach," Energy Policy, Elsevier, vol. 38(7), pages 3245-3256, July.
    8. Shakouri, Mahmoud & Lee, Hyun Woo & Choi, Kunhee, 2015. "PACPIM: New decision-support model of optimized portfolio analysis for community-based photovoltaic investment," Applied Energy, Elsevier, vol. 156(C), pages 607-617.
    9. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    10. Marrero, Gustavo A. & Puch, Luis A. & Ramos-Real, Francisco J., 2015. "Mean-variance portfolio methods for energy policy risk management," International Review of Economics & Finance, Elsevier, vol. 40(C), pages 246-264.
    11. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    12. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    13. Shimon Awerbuch, 2006. "Portfolio-Based Electricity Generation Planning: Policy Implications For Renewables And Energy Security," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 11(3), pages 693-710, May.
    14. Delarue, Erik & De Jonghe, Cedric & Belmans, Ronnie & D'haeseleer, William, 2011. "Applying portfolio theory to the electricity sector: Energy versus power," Energy Economics, Elsevier, vol. 33(1), pages 12-23, January.
    15. Rustem, Berc & Becker, Robin G. & Marty, Wolfgang, 2000. "Robust min-max portfolio strategies for rival forecast and risk scenarios," Journal of Economic Dynamics and Control, Elsevier, vol. 24(11-12), pages 1591-1621, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Panos Xidonas & Ralph Steuer & Christis Hassapis, 2020. "Robust portfolio optimization: a categorized bibliographic review," Annals of Operations Research, Springer, vol. 292(1), pages 533-552, September.
    2. de Oliveira, Glauber Cardoso & Bertone, Edoardo & Stewart, Rodney A., 2022. "Optimisation modelling tools and solving techniques for integrated precinct-scale energy–water system planning," Applied Energy, Elsevier, vol. 318(C).
    3. David Juárez-Luna, 2021. "Power generation portfolios: A parametric formulation of the efficient frontier," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-29, Enero - M.
    4. Irawan, Chandra Ade & Jones, Dylan & Hofman, Peter S. & Zhang, Lina, 2023. "Integrated strategic energy mix and energy generation planning with multiple sustainability criteria and hierarchical stakeholders," European Journal of Operational Research, Elsevier, vol. 308(2), pages 864-883.
    5. David Juárez-Luna, 2021. "Power generation portfolios: A parametric formulation of the efficient frontier," Remef - Revista Mexicana de Economía y Finanzas Nueva Época REMEF (The Mexican Journal of Economics and Finance), Instituto Mexicano de Ejecutivos de Finanzas, IMEF, vol. 16(1), pages 1-29, Enero - M.
    6. Koltsaklis, Nikolaos E. & Nazos, Konstantinos, 2017. "A stochastic MILP energy planning model incorporating power market dynamics," Applied Energy, Elsevier, vol. 205(C), pages 1364-1383.
    7. Rego, Erik Eduardo & Costa, Oswaldo L.V. & Ribeiro, Celma de Oliveira & Lima Filho, Roberto Ivo da R. & Takada, Hellinton & Stern, Julio, 2020. "The trade-off between demand growth and renewables: A multiperiod electricity planning model under CO2 emission constraints," Energy, Elsevier, vol. 213(C).
    8. Shahriari, Mehdi & Blumsack, Seth, 2018. "The capacity value of optimal wind and solar portfolios," Energy, Elsevier, vol. 148(C), pages 992-1005.
    9. Kaiqiang An & Guiyu Zhao & Jinjun Li & Jingsong Tian & Lihua Wang & Liang Xian & Chen Chen, 2023. "Best-Case Scenario Robust Portfolio: Evidence from China Stock Market," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 30(2), pages 297-322, June.
    10. Ma, Yilin & Wang, Yudong & Wang, Weizhong & Zhang, Chong, 2023. "Portfolios with return and volatility prediction for the energy stock market," Energy, Elsevier, vol. 270(C).
    11. Chen, Chen & Liu, Dinghao & Xian, Liang & Pan, Lin & Wang, Lihua & Yang, Min & Quan, Li, 2020. "Best-case scenario robust portfolio for energy stock market," Energy, Elsevier, vol. 213(C).
    12. Hellinton H. Takada & Celma O. Ribeiro & Oswaldo L. V. Costa & Julio M. Stern, 2020. "Gini and Entropy-Based Spread Indexes for Primary Energy Consumption Efficiency and CO 2 Emission," Energies, MDPI, vol. 13(18), pages 1-17, September.
    13. Chandra Ade Irawan & Peter S. Hofman & Hing Kai Chan & Antony Paulraj, 2022. "A stochastic programming model for an energy planning problem: formulation, solution method and application," Annals of Operations Research, Springer, vol. 311(2), pages 695-730, April.
    14. Zhang, Shuang & Zhao, Tao & Xie, Bai-Chen, 2018. "What is the optimal power generation mix of China? An empirical analysis using portfolio theory," Applied Energy, Elsevier, vol. 229(C), pages 522-536.
    15. Andewi Rokhmawati, 2020. "The Nexus between Type of Energy Consumed, CO2 Emissions, and Carbon-Related Costs," International Journal of Energy Economics and Policy, Econjournals, vol. 10(4), pages 172-183.
    16. Carina Fagefors & Björn Lantz, 2021. "Application of Portfolio Theory to Healthcare Capacity Management," IJERPH, MDPI, vol. 18(2), pages 1-9, January.
    17. Emanuel Canelas & Tânia Pinto-Varela & Bartosz Sawik, 2020. "Electricity Portfolio Optimization for Large Consumers: Iberian Electricity Market Case Study," Energies, MDPI, vol. 13(9), pages 1-21, May.
    18. Oliveira, Sydnei Marssal de & Ribeiro, Celma de Oliveira & Cicogna, Maria Paula Vieira, 2018. "Uncertainty effects on production mix and on hedging decisions: The case of Brazilian ethanol and sugar," Energy Economics, Elsevier, vol. 70(C), pages 516-524.
    19. Adrian Gepp & Geoff Harris & Bruce Vanstone, 2020. "Financial applications of semidefinite programming: a review and call for interdisciplinary research," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 60(4), pages 3527-3555, December.
    20. Ioannou, Anastasia & Fuzuli, Gulistiani & Brennan, Feargal & Yudha, Satya Widya & Angus, Andrew, 2019. "Multi-stage stochastic optimization framework for power generation system planning integrating hybrid uncertainty modelling," Energy Economics, Elsevier, vol. 80(C), pages 760-776.
    21. Ilka Deluque & Ekundayo Shittu & Jonathan Deason, 2018. "Evaluating the reliability of efficient energy technology portfolios," EURO Journal on Decision Processes, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 115-138, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Frank Fabozzi & Dashan Huang & Guofu Zhou, 2010. "Robust portfolios: contributions from operations research and finance," Annals of Operations Research, Springer, vol. 176(1), pages 191-220, April.
    2. Zhang, Shuang & Zhao, Tao & Xie, Bai-Chen, 2018. "What is the optimal power generation mix of China? An empirical analysis using portfolio theory," Applied Energy, Elsevier, vol. 229(C), pages 522-536.
    3. Pérez Odeh, Rodrigo & Watts, David & Flores, Yarela, 2018. "Planning in a changing environment: Applications of portfolio optimisation to deal with risk in the electricity sector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 3808-3823.
    4. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2022. "Robust portfolio selection problems: a comprehensive review," Operational Research, Springer, vol. 22(4), pages 3203-3264, September.
    5. Alireza Ghahtarani & Ahmed Saif & Alireza Ghasemi, 2021. "Robust Portfolio Selection Problems: A Comprehensive Review," Papers 2103.13806, arXiv.org, revised Jan 2022.
    6. Vithayasrichareon, Peerapat & MacGill, Iain F., 2013. "Assessing the value of wind generation in future carbon constrained electricity industries," Energy Policy, Elsevier, vol. 53(C), pages 400-412.
    7. Maillet, Bertrand & Tokpavi, Sessi & Vaucher, Benoit, 2015. "Global minimum variance portfolio optimisation under some model risk: A robust regression-based approach," European Journal of Operational Research, Elsevier, vol. 244(1), pages 289-299.
    8. Pérez Odeh, Rodrigo & Watts, David & Negrete-Pincetic, Matías, 2018. "Portfolio applications in electricity markets review: Private investor and manager perspective trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 192-204.
    9. Zhilin Kang & Zhongfei Li, 2018. "An exact solution to a robust portfolio choice problem with multiple risk measures under ambiguous distribution," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 87(2), pages 169-195, April.
    10. Gianfranco Guastaroba & Gautam Mitra & M Grazia Speranza, 2011. "Investigating the effectiveness of robust portfolio optimization techniques," Journal of Asset Management, Palgrave Macmillan, vol. 12(4), pages 260-280, September.
    11. Hellinton H. Takada & Celma O. Ribeiro & Oswaldo L. V. Costa & Julio M. Stern, 2020. "Gini and Entropy-Based Spread Indexes for Primary Energy Consumption Efficiency and CO 2 Emission," Energies, MDPI, vol. 13(18), pages 1-17, September.
    12. Huang, Dashan & Zhu, Shushang & Fabozzi, Frank J. & Fukushima, Masao, 2010. "Portfolio selection under distributional uncertainty: A relative robust CVaR approach," European Journal of Operational Research, Elsevier, vol. 203(1), pages 185-194, May.
    13. Selim Mankai & Khaled Guesmi, 2014. "Robust Portfolio Protection: A Scenarios-Based Approach," Working Papers hal-04141326, HAL.
    14. Vithayasrichareon, Peerapat & MacGill, Iain F., 2014. "Incorporating short-term operational plant constraints into assessments of future electricity generation portfolios," Applied Energy, Elsevier, vol. 128(C), pages 144-155.
    15. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2014. "Recent Developments in Robust Portfolios with a Worst-Case Approach," Journal of Optimization Theory and Applications, Springer, vol. 161(1), pages 103-121, April.
    16. P. Bonami & M. A. Lejeune, 2009. "An Exact Solution Approach for Portfolio Optimization Problems Under Stochastic and Integer Constraints," Operations Research, INFORMS, vol. 57(3), pages 650-670, June.
    17. Kai Ye & Panos Parpas & Berç Rustem, 2012. "Robust portfolio optimization: a conic programming approach," Computational Optimization and Applications, Springer, vol. 52(2), pages 463-481, June.
    18. Jang Ho Kim & Woo Chang Kim & Frank J. Fabozzi, 2018. "Recent advancements in robust optimization for investment management," Annals of Operations Research, Springer, vol. 266(1), pages 183-198, July.
    19. Losekann, Luciano & Marrero, Gustavo A. & Ramos-Real, Francisco J. & de Almeida, Edmar Luiz Fagundes, 2013. "Efficient power generating portfolio in Brazil: Conciliating cost, emissions and risk," Energy Policy, Elsevier, vol. 62(C), pages 301-314.
    20. Kim, Woo Chang & Kim, Min Jeong & Kim, Jang Ho & Fabozzi, Frank J., 2014. "Robust portfolios that do not tilt factor exposure," European Journal of Operational Research, Elsevier, vol. 234(2), pages 411-421.

    More about this item

    Keywords

    Electricity planning; Policy-making; Mean-variance; Robust optimization; Uncertainty; Portfolio theory;
    All these keywords.

    JEL classification:

    • C61 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Optimization Techniques; Programming Models; Dynamic Analysis
    • G11 - Financial Economics - - General Financial Markets - - - Portfolio Choice; Investment Decisions
    • Q43 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Energy and the Macroeconomy
    • Q48 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Energy - - - Government Policy
    • C63 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling - - - Computational Techniques

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:64:y:2017:i:c:p:158-169. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.