IDEAS home Printed from https://ideas.repec.org/a/eee/eneeco/v32y2010i2p269-277.html
   My bibliography  Save this article

Time-dependent correlations in electricity markets

Author

Listed:
  • Alvarez-Ramirez, Jose
  • Escarela-Perez, Rafael

Abstract

In the last years, many electricity markets were subjected to deregulated operation where prices are set by the action of market participants. In this form, producers and consumers rely on demand and price forecasts to decide their bidding strategies, allocate assets, negotiate bilateral contracts, hedge risks, and plan facility investments. A basic feature of efficient market hypothesis is the absence of correlations between price increments over any time scale leading to random walk-type behavior of prices, so arbitrage is not possible. However, recent studies have suggested that this is not the case and correlations are present in the behavior of diverse electricity markets. In this paper, a temporal quantification of electricity market correlations is made by means of detrended fluctuation and Allan analyses. The approach is applied to two Canadian electricity markets, Ontario and Alberta. The results show the existence of correlations in both demand and prices, exhibiting complex time-dependent behavior with lower correlations in winter while higher in summer. Relatively steady annual cycles in demand but unstable cycles in prices are detected. On the other hand, the more significant nonlinear effects (measured in terms of a multifractality index) are found for winter months, while the converse behavior is displayed during the summer period. In terms of forecasting models, our results suggest that nonlinear recursive models (e.g., feedback NNs) should be used for accurate day-ahead price estimation. In contrast, linear models can suffice for demand forecasting purposes.

Suggested Citation

  • Alvarez-Ramirez, Jose & Escarela-Perez, Rafael, 2010. "Time-dependent correlations in electricity markets," Energy Economics, Elsevier, vol. 32(2), pages 269-277, March.
  • Handle: RePEc:eee:eneeco:v:32:y:2010:i:2:p:269-277
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0140-9883(09)00081-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bowden, Nicholas & Payne, James E., 2008. "Short term forecasting of electricity prices for MISO hubs: Evidence from ARIMA-EGARCH models," Energy Economics, Elsevier, vol. 30(6), pages 3186-3197, November.
    2. Norouzzadeh, P. & Dullaert, W. & Rahmani, B., 2007. "Anti-correlation and multifractal features of Spain electricity spot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 380(C), pages 333-342.
    3. Weron, Rafal & Przybyłowicz, Beata, 2000. "Hurst analysis of electricity price dynamics," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 283(3), pages 462-468.
    4. Simonsen, Ingve, 2003. "Measuring anti-correlations in the nordic electricity spot market by wavelets," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 322(C), pages 597-606.
    5. Ingve Simonsen, 2001. "Measuring Anti-Correlations in the Nordic Electricity Spot Market by Wavelets," Papers cond-mat/0108033, arXiv.org, revised Apr 2003.
    6. Huisman, Ronald & Huurman, Christian & Mahieu, Ronald, 2007. "Hourly electricity prices in day-ahead markets," Energy Economics, Elsevier, vol. 29(2), pages 240-248, March.
    7. Parameswaran Gopikrishnan & Vasiliki Plerou & Xavier Gabaix & H. Eugene Stanley, 2000. "Statistical Properties of Share Volume Traded in Financial Markets," Papers cond-mat/0008113, arXiv.org.
    8. Kantelhardt, Jan W. & Zschiegner, Stephan A. & Koscielny-Bunde, Eva & Havlin, Shlomo & Bunde, Armin & Stanley, H.Eugene, 2002. "Multifractal detrended fluctuation analysis of nonstationary time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 316(1), pages 87-114.
    9. Uritskaya, Olga Y. & Serletis, Apostolos, 2008. "Quantifying multiscale inefficiency in electricity markets," Energy Economics, Elsevier, vol. 30(6), pages 3109-3117, November.
    10. repec:clg:wpaper:2008-21 is not listed on IDEAS
    11. Apostolos Serletis & Mattia Bianchi, 2007. "Informational Efficiency and Interchange Transactions in Alberta's Electricity Market," The Energy Journal, International Association for Energy Economics, vol. 0(Number 3), pages 121-144.
    12. F J Nogales & A J Conejo, 2006. "Electricity price forecasting through transfer function models," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(4), pages 350-356, April.
    13. Unknown, 2005. "Forward," 2005 Conference: Slovenia in the EU - Challenges for Agriculture, Food Science and Rural Affairs, November 10-11, 2005, Moravske Toplice, Slovenia 183804, Slovenian Association of Agricultural Economists (DAES).
    14. Grau-Carles, Pilar, 2006. "Bootstrap testing for detrended fluctuation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 360(1), pages 89-98.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alvarez-Ramirez, J. & Escarela-Perez, R. & Espinosa-Perez, G. & Urrea, R., 2009. "Dynamics of electricity market correlations," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 388(11), pages 2173-2188.
    2. Ladislav KRISTOUFEK & Petra LUNACKOVA, 2013. "Long-term Memory in Electricity Prices: Czech Market Evidence," Czech Journal of Economics and Finance (Finance a uver), Charles University Prague, Faculty of Social Sciences, vol. 63(5), pages 407-424, November.
    3. Avci-Surucu, Ezgi & Aydogan, A. Kursat & Akgul, Doganbey, 2016. "Bidding structure, market efficiency and persistence in a multi-time tariff setting," Energy Economics, Elsevier, vol. 54(C), pages 77-87.
    4. Serinaldi, Francesco, 2010. "Use and misuse of some Hurst parameter estimators applied to stationary and non-stationary financial time series," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 389(14), pages 2770-2781.
    5. Lavička, Hynek & Kracík, Jiří, 2020. "Fluctuation analysis of electric power loads in Europe: Correlation multifractality vs. Distribution function multifractality," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 545(C).
    6. Kracík, Jiří & Lavička, Hynek, 2016. "Fluctuation analysis of high frequency electric power load in the Czech Republic," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 462(C), pages 951-961.
    7. Fan, Qingju, 2016. "Asymmetric multiscale detrended fluctuation analysis of California electricity spot price," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 442(C), pages 252-260.
    8. Michel Culot & Valérie Goffin & Steve Lawford & Sébastien de Meten & Yves Smeers, 2013. "Practical stochastic modelling of electricity prices," Post-Print hal-01021603, HAL.
    9. Juraj Čurpek, 2019. "Time Evolution of Hurst Exponent: Czech Wholesale Electricity Market Study," European Financial and Accounting Journal, Prague University of Economics and Business, vol. 2019(3), pages 25-44.
    10. Martin Rypdal & Ola L{o}vsletten, 2012. "Modeling electricity spot prices using mean-reverting multifractal processes," Papers 1201.6137, arXiv.org.
    11. Rypdal, Martin & Løvsletten, Ola, 2013. "Modeling electricity spot prices using mean-reverting multifractal processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 392(1), pages 194-207.
    12. Erzgräber, Hartmut & Strozzi, Fernanda & Zaldívar, José-Manuel & Touchette, Hugo & Gutiérrez, Eugénio & Arrowsmith, David K., 2008. "Time series analysis and long range correlations of Nordic spot electricity market data," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 387(26), pages 6567-6574.
    13. Rafal Weron, 2006. "Modeling and Forecasting Electricity Loads and Prices: A Statistical Approach," HSC Books, Hugo Steinhaus Center, Wroclaw University of Technology, number hsbook0601.
    14. Qian, Xi-Yuan & Gu, Gao-Feng & Zhou, Wei-Xing, 2011. "Modified detrended fluctuation analysis based on empirical mode decomposition for the characterization of anti-persistent processes," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 390(23), pages 4388-4395.
    15. Afanasyev, Dmitriy O. & Fedorova, Elena A. & Popov, Viktor U., 2015. "Fine structure of the price–demand relationship in the electricity market: Multi-scale correlation analysis," Energy Economics, Elsevier, vol. 51(C), pages 215-226.
    16. Weron, Rafal, 2008. "Market price of risk implied by Asian-style electricity options and futures," Energy Economics, Elsevier, vol. 30(3), pages 1098-1115, May.
    17. Michael Bierbrauer & Stefan Trueck & Rafal Weron, 2005. "Modeling electricity prices with regime switching models," Econometrics 0502005, University Library of Munich, Germany.
    18. Fan, Qingju & Li, Dan, 2015. "Multifractal cross-correlation analysis in electricity spot market," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 429(C), pages 17-27.
    19. Olga Y. Uritskaya & Vadim M. Uritsky, 2015. "Predictability of price movements in deregulated electricity markets," Papers 1505.08117, arXiv.org.
    20. Weron, Rafał, 2014. "Electricity price forecasting: A review of the state-of-the-art with a look into the future," International Journal of Forecasting, Elsevier, vol. 30(4), pages 1030-1081.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:eneeco:v:32:y:2010:i:2:p:269-277. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eneco .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.