IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v304y2023i1p219-238.html
   My bibliography  Save this article

Design of control strategies to help prevent the spread of COVID-19 pandemic

Author

Listed:
  • Hosseini-Motlagh, Seyyed-Mahdi
  • Samani, Mohammad Reza Ghatreh
  • Homaei, Shamim

Abstract

This paper proposes control strategies to allocate COVID-19 patients to screening facilities, health facilities, and quarantine facilities for minimizing the spread of the virus by these patients. To calculate the transmission rate, we propose a function that accounts for contact rate, duration of the contact, age structure of the population, susceptibility to infection, and the number of transmission events per contact. Moreover, the COVID-19 cases are divided into different groups according to the severity of their disease and are allocated to appropriate health facilities that provide care tailored to their needs. The multi-stage fuzzy stochastic programming approach is applied to cope with uncertainty, in which the probability associated with nodes of the scenario tree is treated as fuzzy variables. To handle the probabilistic model, we use a more flexible measure, Me measure, which allows decision-makers to adopt varying attitudes by assigning the optimistic-pessimistic parameter. This measure does not force decision-makers to hold extreme views and obtain the interval solution that provides further information in the fuzzy environment. We apply the proposed model to the case of Tehran, Iran. The results of this study indicate that assigning patients to appropriate medical centers improves the performance of the healthcare system. The result analysis highlights the impact of the demographic differences on virus transmission, and the older population has a greater influence on virus transmission than other age groups. Besides, the results indicate that behavioral changes in the population and their vaccination play a key role in curbing COVID-19 transmission.

Suggested Citation

  • Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2023. "Design of control strategies to help prevent the spread of COVID-19 pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 219-238.
  • Handle: RePEc:eee:ejores:v:304:y:2023:i:1:p:219-238
    DOI: 10.1016/j.ejor.2021.11.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721009620
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.11.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tanner, Matthew W. & Ntaimo, Lewis, 2010. "IIS branch-and-cut for joint chance-constrained stochastic programs and application to optimal vaccine allocation," European Journal of Operational Research, Elsevier, vol. 207(1), pages 290-296, November.
    2. Alam, Shahriar Tanvir & Ahmed, Sayem & Ali, Syed Mithun & Sarker, Sudipa & Kabir, Golam & ul-Islam, Asif, 2021. "Challenges to COVID-19 vaccine supply chain: Implications for sustainable development goals," International Journal of Production Economics, Elsevier, vol. 239(C).
    3. Jürgen Hackl & Thibaut Dubernet, 2019. "Epidemic Spreading in Urban Areas Using Agent-Based Transportation Models," Future Internet, MDPI, vol. 11(4), pages 1-14, April.
    4. Rachaniotis, Nikolaos P. & Dasaklis, Tom K. & Pappis, Costas P., 2012. "A deterministic resource scheduling model in epidemic control: A case study," European Journal of Operational Research, Elsevier, vol. 216(1), pages 225-231.
    5. Nagurney, Anna, 2021. "Supply chain game theory network modeling under labor constraints: Applications to the Covid-19 pandemic," European Journal of Operational Research, Elsevier, vol. 293(3), pages 880-891.
    6. Shixiong Hu & Wei Wang & Yan Wang & Maria Litvinova & Kaiwei Luo & Lingshuang Ren & Qianlai Sun & Xinghui Chen & Ge Zeng & Jing Li & Lu Liang & Zhihong Deng & Wen Zheng & Mei Li & Hao Yang & Jinxin Gu, 2021. "Author Correction: Infectivity, susceptibility, and risk factors associated with SARS-CoV-2 transmission under intensive contact tracing in Hunan, China," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    7. Alain, Guinet & Angel, Ruiz, 2016. "Modeling the logistics response to a bioterrorist anthrax attackAuthor-Name: Wanying, Chen," European Journal of Operational Research, Elsevier, vol. 254(2), pages 458-471.
    8. Ming Liu & Ding Zhang, 2016. "A dynamic logistics model for medical resources allocation in an epidemic control with demand forecast updating," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 67(6), pages 841-852, June.
    9. Ivanov, Dmitry, 2020. "Predicting the impacts of epidemic outbreaks on global supply chains: A simulation-based analysis on the coronavirus outbreak (COVID-19/SARS-CoV-2) case," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    10. Govindan, Kannan & Mina, Hassan & Alavi, Behrouz, 2020. "A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19)," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    11. Yarmand, Hamed & Ivy, Julie S. & Denton, Brian & Lloyd, Alun L., 2014. "Optimal two-phase vaccine allocation to geographically different regions under uncertainty," European Journal of Operational Research, Elsevier, vol. 233(1), pages 208-219.
    12. Shixiong Hu & Wei Wang & Yan Wang & Maria Litvinova & Kaiwei Luo & Lingshuang Ren & Qianlai Sun & Xinghui Chen & Ge Zeng & Jing Li & Lu Liang & Zhihong Deng & Wen Zheng & Mei Li & Hao Yang & Jinxin Gu, 2021. "Infectivity, susceptibility, and risk factors associated with SARS-CoV-2 transmission under intensive contact tracing in Hunan, China," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    13. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    14. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2020. "Toward a coordination of inventory and distribution schedules for blood in disasters," Socio-Economic Planning Sciences, Elsevier, vol. 72(C).
    15. He, Yuxuan & Liu, Nan, 2015. "Methodology of emergency medical logistics for public health emergencies," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 79(C), pages 178-200.
    16. Nikolopoulos, Konstantinos & Punia, Sushil & Schäfers, Andreas & Tsinopoulos, Christos & Vasilakis, Chrysovalantis, 2021. "Forecasting and planning during a pandemic: COVID-19 growth rates, supply chain disruptions, and governmental decisions," European Journal of Operational Research, Elsevier, vol. 290(1), pages 99-115.
    17. Li, Yuhong & Chen, Kedong & Collignon, Stephane & Ivanov, Dmitry, 2021. "Ripple effect in the supply chain network: Forward and backward disruption propagation, network health and firm vulnerability," European Journal of Operational Research, Elsevier, vol. 291(3), pages 1117-1131.
    18. Lin, Qi & Zhao, Qiuhong & Lev, Benjamin, 2020. "Cold chain transportation decision in the vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 283(1), pages 182-195.
    19. Shixiong Hu & Wei Wang & Yan Wang & Maria Litvinova & Kaiwei Luo & Lingshuang Ren & Qianlai Sun & Xinghui Chen & Ge Zeng & Jing Li & Lu Liang & Zhihong Deng & Wen Zheng & Mei Li & Hao Yang & Jinxin Gu, 2021. "Author Correction: Infectivity, susceptibility, and risk factors associated with SARS-CoV-2 transmission under intensive contact tracing in Hunan, China," Nature Communications, Nature, vol. 12(1), pages 1-1, December.
    20. Ali Ekici & Pınar Keskinocak & Julie L. Swann, 2014. "Modeling Influenza Pandemic and Planning Food Distribution," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 11-27, February.
    21. Ming Liu & Xifen Xu & Jie Cao & Ding Zhang, 2020. "Integrated planning for public health emergencies: A modified model for controlling H1N1 pandemic," Journal of the Operational Research Society, Taylor & Francis Journals, vol. 71(5), pages 748-761, May.
    22. Silal, Sheetal Prakash, 2021. "Operational research: A multidisciplinary approach for the management of infectious disease in a global context," European Journal of Operational Research, Elsevier, vol. 291(3), pages 929-934.
    23. Azrah A. Anparasan & Miguel A. Lejeune, 2018. "Data laboratory for supply chain response models during epidemic outbreaks," Annals of Operations Research, Springer, vol. 270(1), pages 53-64, November.
    24. Sanjay Mehrotra & Hamed Rahimian & Masoud Barah & Fengqiao Luo & Karolina Schantz, 2020. "A model of supply‐chain decisions for resource sharing with an application to ventilator allocation to combat COVID‐19," Naval Research Logistics (NRL), John Wiley & Sons, vol. 67(5), pages 303-320, August.
    25. Radboud J. Duintjer Tebbens & Kimberly M. Thompson, 2009. "Priority Shifting and the Dynamics of Managing Eradicable Infectious Diseases," Management Science, INFORMS, vol. 55(4), pages 650-663, April.
    26. Samani, Mohammad Reza Ghatreh & Hosseini-Motlagh, Seyyed-Mahdi & Homaei, Shamim, 2020. "A reactive phase against disruptions for designing a proactive platelet supply network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sina Abbasi & Ilias Vlachos & Shabnam Rekabi & Mohammad Talooni, 2023. "Designing the Distribution Network of Essential Items in the Critical Conditions of Earthquakes and COVID-19 Simultaneously," Sustainability, MDPI, vol. 15(22), pages 1-23, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    2. Muhammad Umar Farooq & Amjad Hussain & Tariq Masood & Muhammad Salman Habib, 2021. "Supply Chain Operations Management in Pandemics: A State-of-the-Art Review Inspired by COVID-19," Sustainability, MDPI, vol. 13(5), pages 1-33, February.
    3. Chowdhury, Priyabrata & Paul, Sanjoy Kumar & Kaisar, Shahriar & Moktadir, Md. Abdul, 2021. "COVID-19 pandemic related supply chain studies: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    4. Manupati, Vijaya Kumar & Schoenherr, Tobias & Subramanian, Nachiappan & Ramkumar, M. & Soni, Bhanushree & Panigrahi, Suraj, 2021. "A multi-echelon dynamic cold chain for managing vaccine distribution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    5. Biswas, Debajyoti & Alfandari, Laurent, 2022. "Designing an optimal sequence of non‐pharmaceutical interventions for controlling COVID-19," European Journal of Operational Research, Elsevier, vol. 303(3), pages 1372-1391.
    6. Xiaoyan Xu & Suresh P. Sethi & Sai‐Ho Chung & Tsan‐Ming Choi, 2023. "Reforming global supply chain management under pandemics: The GREAT‐3Rs framework," Production and Operations Management, Production and Operations Management Society, vol. 32(2), pages 524-546, February.
    7. Muckstadt, John A. & Klein, Michael G. & Jackson, Peter L. & Gougelet, Robert M. & Hupert, Nathaniel, 2023. "Efficient and effective large-scale vaccine distribution," International Journal of Production Economics, Elsevier, vol. 262(C).
    8. Xie, Lei & Hou, Pengwen & Han, Hongshuai, 2021. "Implications of government subsidy on the vaccine product R&D when the buyer is risk averse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    9. Fadaki, Masih & Abareshi, Ahmad & Far, Shaghayegh Maleki & Lee, Paul Tae-Woo, 2022. "Multi-period vaccine allocation model in a pandemic: A case study of COVID-19 in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    10. Brusset, Xavier & Ivanov, Dmitry & Jebali, Aida & La Torre, Davide & Repetto, Marco, 2023. "A dynamic approach to supply chain reconfiguration and ripple effect analysis in an epidemic," International Journal of Production Economics, Elsevier, vol. 263(C).
    11. Zhang, Jianghua & Long, Daniel Zhuoyu & Li, Yuchen, 2023. "A reliable emergency logistics network for COVID-19 considering the uncertain time-varying demands," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 172(C).
    12. Hu, Hui & Xu, Jiajun & Liu, Mengqi & Lim, Ming K., 2023. "Vaccine supply chain management: An intelligent system utilizing blockchain, IoT and machine learning," Journal of Business Research, Elsevier, vol. 156(C).
    13. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    14. Maciel M. Queiroz & Dmitry Ivanov & Alexandre Dolgui & Samuel Fosso Wamba, 2022. "Impacts of epidemic outbreaks on supply chains: mapping a research agenda amid the COVID-19 pandemic through a structured literature review," Annals of Operations Research, Springer, vol. 319(1), pages 1159-1196, December.
    15. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    16. Burgos, Diana & Ivanov, Dmitry, 2021. "Food retail supply chain resilience and the COVID-19 pandemic: A digital twin-based impact analysis and improvement directions," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 152(C).
    17. Dastgoshade, Sohaib & Shafiee, Mohammad & Klibi, Walid & Shishebori, Davood, 2022. "Social equity-based distribution networks design for the COVID-19 vaccine," International Journal of Production Economics, Elsevier, vol. 250(C).
    18. Shaker Ardakani, Elham & Gilani Larimi, Niloofar & Oveysi Nejad, Maryam & Madani Hosseini, Mahsa & Zargoush, Manaf, 2023. "A resilient, robust transformation of healthcare systems to cope with COVID-19 through alternative resources," Omega, Elsevier, vol. 114(C).
    19. Vahdani, Behnam & Mohammadi, Mehrdad & Thevenin, Simon & Gendreau, Michel & Dolgui, Alexandre & Meyer, Patrick, 2023. "Fair-split distribution of multi-dose vaccines with prioritized age groups and dynamic demand: The case study of COVID-19," European Journal of Operational Research, Elsevier, vol. 310(3), pages 1249-1272.
    20. Hammami, Ramzi & Salman, Sinan & Khouja, Moutaz & Nouira, Imen & Alaswad, Suzan, 2023. "Government strategies to secure the supply of medical products in pandemic times," European Journal of Operational Research, Elsevier, vol. 306(3), pages 1364-1387.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:304:y:2023:i:1:p:219-238. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.