IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v297y2022i2p729-740.html
   My bibliography  Save this article

Reconciling mean-variance portfolio theory with non-Gaussian returns

Author

Listed:
  • Lassance, Nathan

Abstract

Mean-variance portfolio theory remains frequently used as an investment rationale because of its simplicity, its closed-form solution, and the availability of well-performing robust estimators. At the same time, it is also frequently rejected on the grounds that it ignores the higher moments of non-Gaussian returns. However, higher-moment portfolios are associated with many different objective functions, are numerically more complex, and exacerbate estimation risk. In this paper, we reconcile mean-variance portfolio theory with non-Gaussian returns by identifying, among all portfolios on the mean-variance efficient frontier, the one that optimizes a chosen higher-moment criterion. Numerical simulations and an empirical analysis show, for three higher-moment objective functions and adjusting for transaction costs, that the proposed portfolio strikes a favorable tradeoff between specification and estimation error. Specifically, in terms of out-of-sample Sharpe ratio and higher moments, it outperforms the global-optimal portfolio, and also the global-minimum-variance portfolio except when using monthly returns for which estimation error is more prominent.

Suggested Citation

  • Lassance, Nathan, 2022. "Reconciling mean-variance portfolio theory with non-Gaussian returns," European Journal of Operational Research, Elsevier, vol. 297(2), pages 729-740.
  • Handle: RePEc:eee:ejores:v:297:y:2022:i:2:p:729-740
    DOI: 10.1016/j.ejor.2021.06.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721005312
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.06.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ledoit, Olivier & Wolf, Michael, 2004. "A well-conditioned estimator for large-dimensional covariance matrices," Journal of Multivariate Analysis, Elsevier, vol. 88(2), pages 365-411, February.
    2. Walter Briec & Kristiaan Kerstens & Octave Jokung, 2007. "Mean-Variance-Skewness Portfolio Performance Gauging: A General Shortage Function and Dual Approach," Management Science, INFORMS, vol. 53(1), pages 135-149, January.
    3. Gordon J. Alexander & Alexandre M. Baptista, 2004. "A Comparison of VaR and CVaR Constraints on Portfolio Selection with the Mean-Variance Model," Management Science, INFORMS, vol. 50(9), pages 1261-1273, September.
    4. Kris Boudt & Dries Cornilly & Tim Verdonck, 2020. "A Coskewness Shrinkage Approach for Estimating the Skewness of Linear Combinations of Random Variables [International Asset Allocation with Regime Shifts]," Journal of Financial Econometrics, Society for Financial Econometrics, vol. 18(1), pages 1-23.
    5. Victor DeMiguel & Lorenzo Garlappi & Raman Uppal, 2009. "Optimal Versus Naive Diversification: How Inefficient is the 1-N Portfolio Strategy?," Review of Financial Studies, Society for Financial Studies, vol. 22(5), pages 1915-1953, May.
    6. Olivier Ledoit & Michael Wolf, 2017. "Nonlinear Shrinkage of the Covariance Matrix for Portfolio Selection: Markowitz Meets Goldilocks," Review of Financial Studies, Society for Financial Studies, vol. 30(12), pages 4349-4388.
    7. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.
    8. MacKinlay, A Craig & Pastor, Lubos, 2000. "Asset Pricing Models: Implications for Expected Returns and Portfolio Selection," Review of Financial Studies, Society for Financial Studies, vol. 13(4), pages 883-916.
    9. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1683, August.
    10. Briec, Walter & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2013. "Portfolio selection with skewness: A comparison of methods and a generalized one fund result," European Journal of Operational Research, Elsevier, vol. 230(2), pages 412-421.
    11. Simaan, Yusif, 2014. "The opportunity cost of mean–variance choice under estimation risk," European Journal of Operational Research, Elsevier, vol. 234(2), pages 382-391.
    12. Massimo Guidolin & Giovanna Nicodano, 2009. "Small caps in international equity portfolios: the effects of variance risk," Annals of Finance, Springer, vol. 5(1), pages 15-48, January.
    13. Turan G. Bali & Stephen J. Brown & K. Ozgur Demirtas, 2013. "Do Hedge Funds Outperform Stocks and Bonds?," Management Science, INFORMS, vol. 59(8), pages 1887-1903, August.
    14. Levy, Haim & Levy, Moshe, 2014. "The benefits of differential variance-based constraints in portfolio optimization," European Journal of Operational Research, Elsevier, vol. 234(2), pages 372-381.
    15. Kan, Raymond & Zhou, Guofu, 2007. "Optimal Portfolio Choice with Parameter Uncertainty," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 42(3), pages 621-656, September.
    16. Victor DeMiguel & Lorenzo Garlappi & Francisco J. Nogales & Raman Uppal, 2009. "A Generalized Approach to Portfolio Optimization: Improving Performance by Constraining Portfolio Norms," Management Science, INFORMS, vol. 55(5), pages 798-812, May.
    17. Levy, Haim, 1969. "A Utility Function Depending on the First Three Moments: Comment," Journal of Finance, American Finance Association, vol. 24(4), pages 715-719, September.
    18. León, Angel & Moreno, Manuel, 2017. "One-sided performance measures under Gram-Charlier distributions," Journal of Banking & Finance, Elsevier, vol. 74(C), pages 38-50.
    19. Lionel Martellini & Volker Ziemann, 2010. "Improved Estimates of Higher-Order Comoments and Implications for Portfolio Selection," Review of Financial Studies, Society for Financial Studies, vol. 23(4), pages 1467-1502, April.
    20. Jiaqin Chen & Ming Yuan, 2016. "Efficient Portfolio Selection in a Large Market," Journal of Financial Econometrics, Oxford University Press, vol. 14(3), pages 496-524.
    21. Scott, Robert C & Horvath, Philip A, 1980. "On the Direction of Preference for Moments of Higher Order Than the Variance," Journal of Finance, American Finance Association, vol. 35(4), pages 915-919, September.
    22. Victor DeMiguel & Francisco J. Nogales, 2009. "Portfolio Selection with Robust Estimation," Operations Research, INFORMS, vol. 57(3), pages 560-577, June.
    23. de Athayde, Gustavo M. & Flores, Renato Jr., 2004. "Finding a maximum skewness portfolio--a general solution to three-moments portfolio choice," Journal of Economic Dynamics and Control, Elsevier, vol. 28(7), pages 1335-1352, April.
    24. Massimo Guidolin & Allan Timmermann, 2008. "International asset allocation under regime switching, skew, and kurtosis preferences," The Review of Financial Studies, Society for Financial Studies, vol. 21(2), pages 889-935, April.
    25. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    26. Yusif Simaan, 1993. "What is the Opportunity Cost of Mean-Variance Investment Strategies?," Management Science, INFORMS, vol. 39(5), pages 578-587, May.
    27. Alexios Ghalanos & Eduardo Rossi & Giovanni Urga, 2015. "Independent Factor Autoregressive Conditional Density Model," Econometric Reviews, Taylor & Francis Journals, vol. 34(5), pages 594-616, May.
    28. Jorion, Philippe, 1986. "Bayes-Stein Estimation for Portfolio Analysis," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 21(3), pages 279-292, September.
    29. DeMiguel, Victor & Martín-Utrera, Alberto & Nogales, Francisco J., 2015. "Parameter Uncertainty in Multiperiod Portfolio Optimization with Transaction Costs," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 50(6), pages 1443-1471, December.
    30. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    31. Laurent El Ghaoui & Maksim Oks & Francois Oustry, 2003. "Worst-Case Value-At-Risk and Robust Portfolio Optimization: A Conic Programming Approach," Operations Research, INFORMS, vol. 51(4), pages 543-556, August.
    32. Markowitz, Harry, 2014. "Mean–variance approximations to expected utility," European Journal of Operational Research, Elsevier, vol. 234(2), pages 346-355.
    33. Ľuboš Pástor, 2000. "Portfolio Selection and Asset Pricing Models," Journal of Finance, American Finance Association, vol. 55(1), pages 179-223, February.
    34. Yusif Simaan, 1993. "Portfolio Selection and Asset Pricing---Three-Parameter Framework," Management Science, INFORMS, vol. 39(5), pages 568-577, May.
    35. Benoit Mandelbrot, 2015. "The Variation of Certain Speculative Prices," World Scientific Book Chapters, in: Anastasios G Malliaris & William T Ziemba (ed.), THE WORLD SCIENTIFIC HANDBOOK OF FUTURES MARKETS, chapter 3, pages 39-78, World Scientific Publishing Co. Pte. Ltd..
    36. Ravi Jagannathan & Tongshu Ma, 2003. "Risk Reduction in Large Portfolios: Why Imposing the Wrong Constraints Helps," Journal of Finance, American Finance Association, vol. 58(4), pages 1651-1684, August.
    37. Kroll, Yoram & Levy, Haim & Markowitz, Harry M, 1984. "Mean-Variance versus Direct Utility Maximization," Journal of Finance, American Finance Association, vol. 39(1), pages 47-61, March.
    38. Levy, H & Markowtiz, H M, 1979. "Approximating Expected Utility by a Function of Mean and Variance," American Economic Review, American Economic Association, vol. 69(3), pages 308-317, June.
    39. Campbell Harvey & John Liechty & Merrill Liechty & Peter Muller, 2010. "Portfolio selection with higher moments," Quantitative Finance, Taylor & Francis Journals, vol. 10(5), pages 469-485.
    40. Eling, Martin & Schuhmacher, Frank, 2007. "Does the choice of performance measure influence the evaluation of hedge funds?," Journal of Banking & Finance, Elsevier, vol. 31(9), pages 2632-2647, September.
    41. Price, Kelly & Price, Barbara & Nantell, Timothy J, 1982. "Variance and Lower Partial Moment Measures of Systematic Risk: Some Analytical and Empirical Results," Journal of Finance, American Finance Association, vol. 37(3), pages 843-855, June.
    42. D. Goldfarb & G. Iyengar, 2003. "Robust Portfolio Selection Problems," Mathematics of Operations Research, INFORMS, vol. 28(1), pages 1-38, February.
    43. Brandtner, Mario & Kürsten, Wolfgang & Rischau, Robert, 2020. "Beyond expected utility: Subjective risk aversion and optimal portfolio choice under convex shortfall risk measures," European Journal of Operational Research, Elsevier, vol. 285(3), pages 1114-1126.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vukovic, Darko B. & Maiti, Moinak & Frömmel, Michael, 2022. "Inflation and portfolio selection," Finance Research Letters, Elsevier, vol. 50(C).
    2. Liu, Weilong & Zhang, Yong & Liu, Kailong & Quinn, Barry & Yang, Xingyu & Peng, Qiao, 2023. "Evolutionary multi-objective optimisation for large-scale portfolio selection with both random and uncertain returns," QBS Working Paper Series 2023/02, Queen's University Belfast, Queen's Business School.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lassance, Nathan & Vrins, Frédéric, 2021. "Portfolio selection with parsimonious higher comoments estimation," Journal of Banking & Finance, Elsevier, vol. 126(C).
    2. Lassance, Nathan & Vrins, Frédéric, 2023. "Portfolio selection: A target-distribution approach," European Journal of Operational Research, Elsevier, vol. 310(1), pages 302-314.
    3. Kolm, Petter N. & Tütüncü, Reha & Fabozzi, Frank J., 2014. "60 Years of portfolio optimization: Practical challenges and current trends," European Journal of Operational Research, Elsevier, vol. 234(2), pages 356-371.
    4. Lassance, Nathan & Vrins, Frédéric, 2019. "Robust portfolio selection using sparse estimation of comoment tensors," LIDAM Discussion Papers LFIN 2019007, Université catholique de Louvain, Louvain Finance (LFIN).
    5. DeMiguel, Victor & Martin-Utrera, Alberto & Nogales, Francisco J., 2013. "Size matters: Optimal calibration of shrinkage estimators for portfolio selection," Journal of Banking & Finance, Elsevier, vol. 37(8), pages 3018-3034.
    6. Simaan, Majeed & Simaan, Yusif & Tang, Yi, 2018. "Estimation error in mean returns and the mean-variance efficient frontier," International Review of Economics & Finance, Elsevier, vol. 56(C), pages 109-124.
    7. Johannes Bock, 2018. "An updated review of (sub-)optimal diversification models," Papers 1811.08255, arXiv.org.
    8. Hwang, Inchang & Xu, Simon & In, Francis, 2018. "Naive versus optimal diversification: Tail risk and performance," European Journal of Operational Research, Elsevier, vol. 265(1), pages 372-388.
    9. Frank Schuhmacher & Hendrik Kohrs & Benjamin R. Auer, 2021. "Justifying Mean-Variance Portfolio Selection when Asset Returns Are Skewed," Management Science, INFORMS, vol. 67(12), pages 7812-7824, December.
    10. Khashanah, Khaldoun & Simaan, Majeed & Simaan, Yusif, 2022. "Do we need higher-order comoments to enhance mean-variance portfolios? Evidence from a simplified jump process," International Review of Financial Analysis, Elsevier, vol. 81(C).
    11. Han, Chulwoo, 2020. "A nonparametric approach to portfolio shrinkage," Journal of Banking & Finance, Elsevier, vol. 120(C).
    12. Penaranda, Francisco, 2007. "Portfolio choice beyond the traditional approach," LSE Research Online Documents on Economics 24481, London School of Economics and Political Science, LSE Library.
    13. Levy, Haim & Simaan, Yusif, 2016. "More possessions, more worry," European Journal of Operational Research, Elsevier, vol. 255(3), pages 893-902.
    14. Plachel, Lukas, 2019. "A unified model for regularized and robust portfolio optimization," Journal of Economic Dynamics and Control, Elsevier, vol. 109(C).
    15. Chavez-Bedoya, Luis & Rosales, Francisco, 2022. "Orthogonal portfolios to assess estimation risk," International Review of Economics & Finance, Elsevier, vol. 80(C), pages 906-937.
    16. Heonbae Jeon & Soonbong Lee & Hongseon Kim & Seung Bum Soh & Seongmoon Kim, 2023. "Portfolio Evaluation with the Vector Distance Based on Portfolio Composition," Mathematics, MDPI, vol. 11(1), pages 1-19, January.
    17. Chakrabarti, Deepayan, 2021. "Parameter-free robust optimization for the maximum-Sharpe portfolio problem," European Journal of Operational Research, Elsevier, vol. 293(1), pages 388-399.
    18. Thomas Trier Bjerring & Omri Ross & Alex Weissensteiner, 2017. "Feature selection for portfolio optimization," Annals of Operations Research, Springer, vol. 256(1), pages 21-40, September.
    19. Chavez-Bedoya, Luis & Rosales, Francisco, 2021. "Reduction of estimation risk in optimal portfolio choice using redundant constraints," International Review of Financial Analysis, Elsevier, vol. 78(C).
    20. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:297:y:2022:i:2:p:729-740. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.