IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v295y2021i2p587-603.html
   My bibliography  Save this article

Risk sharing with multiple indemnity environments

Author

Listed:
  • Asimit, Alexandru V.
  • Boonen, Tim J.
  • Chi, Yichun
  • Chong, Wing Fung

Abstract

Optimal risk sharing arrangements have been substantially studied in the literature, from the aspects of generalizing objective functions, incorporating more business constraints, and investigating different optimality criteria. This paper proposes an insurance model with multiple risk environments. We study the case where the two agents are endowed with the Value-at-Risk or the Tail Value-at-Risk, or when both agents are risk-neutral but have heterogeneous beliefs regarding the underlying probability distribution. We show that layer-type indemnities, within each risk environment, are Pareto optimal, which may be environment-specific. From Pareto optimality, we get that the premium can be chosen in a given interval, and we propose to allocate the gains from risk sharing equally between the buyer and seller.

Suggested Citation

  • Asimit, Alexandru V. & Boonen, Tim J. & Chi, Yichun & Chong, Wing Fung, 2021. "Risk sharing with multiple indemnity environments," European Journal of Operational Research, Elsevier, vol. 295(2), pages 587-603.
  • Handle: RePEc:eee:ejores:v:295:y:2021:i:2:p:587-603
    DOI: 10.1016/j.ejor.2021.03.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221721002022
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2021.03.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ken Binmore & Ariel Rubinstein & Asher Wolinsky, 1986. "The Nash Bargaining Solution in Economic Modelling," RAND Journal of Economics, The RAND Corporation, vol. 17(2), pages 176-188, Summer.
    2. Cheung, K.C. & Chong, W.F. & Yam, S.C.P., 2015. "The optimal insurance under disappointment theories," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 77-90.
    3. Dana, Rose-Anne & Scarsini, Marco, 2007. "Optimal risk sharing with background risk," Journal of Economic Theory, Elsevier, vol. 133(1), pages 152-176, March.
    4. Nash, John, 1950. "The Bargaining Problem," Econometrica, Econometric Society, vol. 18(2), pages 155-162, April.
    5. Asimit, Alexandru V. & Cheung, Ka Chun & Chong, Wing Fung & Hu, Junlei, 2020. "Pareto-optimal insurance contracts with premium budget and minimum charge constraints," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 17-27.
    6. Eric van Damme, 1984. "The Nash Bargaining Solution is Optimal," Discussion Papers 597, Northwestern University, Center for Mathematical Studies in Economics and Management Science.
    7. Gur Huberman & David Mayers & Clifford W. Smith Jr., 1983. "Optimal Insurance Policy Indemnity Schedules," Bell Journal of Economics, The RAND Corporation, vol. 14(2), pages 415-426, Autumn.
    8. Olivier Mahul & Brian D. Wright, 2003. "Designing Optimal Crop Revenue Insurance," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(3), pages 580-589.
    9. Tan, Ken Seng & Wei, Pengyu & Wei, Wei & Zhuang, Sheng Chao, 2020. "Optimal dynamic reinsurance policies under a generalized Denneberg’s absolute deviation principle," European Journal of Operational Research, Elsevier, vol. 282(1), pages 345-362.
    10. Asimit, Vali & Boonen, Tim J., 2018. "Insurance with multiple insurers: A game-theoretic approach," European Journal of Operational Research, Elsevier, vol. 267(2), pages 778-790.
    11. Chi, Yichun, 2012. "Optimal reinsurance under variance related premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 51(2), pages 310-321.
    12. Cui, Wei & Yang, Jingping & Wu, Lan, 2013. "Optimal reinsurance minimizing the distortion risk measure under general reinsurance premium principles," Insurance: Mathematics and Economics, Elsevier, vol. 53(1), pages 74-85.
    13. Assa, Hirbod, 2015. "On optimal reinsurance policy with distortion risk measures and premiums," Insurance: Mathematics and Economics, Elsevier, vol. 61(C), pages 70-75.
    14. Olivier Mahul & Brian Davern Wright, 2003. "Designing optimal crop revenue insurance," Post-Print hal-01954721, HAL.
    15. Damme, Eric van, 1986. "The Nash bargaining solution is optimal," Journal of Economic Theory, Elsevier, vol. 38(1), pages 78-100, February.
    16. Dutang, Christophe & Albrecher, Hansjoerg & Loisel, Stéphane, 2013. "Competition among non-life insurers under solvency constraints: A game-theoretic approach," European Journal of Operational Research, Elsevier, vol. 231(3), pages 702-711.
    17. Borch, Karl, 1960. "Reciprocal Reinsurance Treaties," ASTIN Bulletin, Cambridge University Press, vol. 1(4), pages 170-191, December.
    18. Martin J. Osborne & Ariel Rubinstein, 1994. "A Course in Game Theory," MIT Press Books, The MIT Press, edition 1, volume 1, number 0262650401, December.
    19. J. David Cummins, 2008. "CAT Bonds and Other Risk‐Linked Securities: State of the Market and Recent Developments," Risk Management and Insurance Review, American Risk and Insurance Association, vol. 11(1), pages 23-47, March.
    20. Alan P. Ker & Keith Coble, 2003. "Modeling Conditional Yield Densities," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 85(2), pages 291-304.
    21. Yichun Chi & Wei Wei, 2020. "Optimal insurance with background risk: An analysis of general dependence structures," Finance and Stochastics, Springer, vol. 24(4), pages 903-937, October.
    22. Cheung, K.C. & Chong, W.F. & Yam, S.C.P., 2015. "Convex ordering for insurance preferences," Insurance: Mathematics and Economics, Elsevier, vol. 64(C), pages 409-416.
    23. Boonen, Tim J. & Tan, Ken Seng & Zhuang, Sheng Chao, 2016. "Pricing In Reinsurance Bargaining With Comonotonic Additive Utility Functions," ASTIN Bulletin, Cambridge University Press, vol. 46(2), pages 507-530, May.
    24. Ambrose Lo & Zhaofeng Tang, 2019. "Pareto-optimal reinsurance policies in the presence of individual risk constraints," Annals of Operations Research, Springer, vol. 274(1), pages 395-423, March.
    25. Balbás, Alejandro & Balbás, Beatriz & Heras, Antonio, 2011. "Stable solutions for optimal reinsurance problems involving risk measures," European Journal of Operational Research, Elsevier, vol. 214(3), pages 796-804, November.
    26. Raviv, Artur, 1979. "The Design of an Optimal Insurance Policy," American Economic Review, American Economic Association, vol. 69(1), pages 84-96, March.
    27. Albrecher, Hansjörg & Cani, Arian, 2019. "On randomized reinsurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 84(C), pages 67-78.
    28. Vincent H. Smith & Alan E. Baquet, 1996. "The Demand for Multiple Peril Crop Insurance: Evidence from Montana Wheat Farms," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 78(1), pages 189-201.
    29. Cai, Jun & Liu, Haiyan & Wang, Ruodu, 2017. "Pareto-optimal reinsurance arrangements under general model settings," Insurance: Mathematics and Economics, Elsevier, vol. 77(C), pages 24-37.
    30. Boonen, Tim J. & Ghossoub, Mario, 2019. "On the existence of a representative reinsurer under heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 88(C), pages 209-225.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Boonen, Tim J. & Jiang, Wenjun, 2022. "A marginal indemnity function approach to optimal reinsurance under the Vajda condition," European Journal of Operational Research, Elsevier, vol. 303(2), pages 928-944.
    2. Lee, Hangsuck & Lee, Minha & Hong, Jimin, 2022. "Optimal insurance under moral hazard in loss reduction," The North American Journal of Economics and Finance, Elsevier, vol. 60(C).
    3. Claire Mouminoux & Christophe Dutang & Stéphane Loisel & Hansjoerg Albrecher, 2022. "On a Markovian Game Model for Competitive Insurance Pricing," Methodology and Computing in Applied Probability, Springer, vol. 24(2), pages 1061-1091, June.
    4. Felix-Benedikt Liebrich, 2021. "Risk sharing under heterogeneous beliefs without convexity," Papers 2108.05791, arXiv.org, revised May 2022.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boonen, Tim J. & Jiang, Wenjun, 2022. "A marginal indemnity function approach to optimal reinsurance under the Vajda condition," European Journal of Operational Research, Elsevier, vol. 303(2), pages 928-944.
    2. Asimit, Alexandru V. & Cheung, Ka Chun & Chong, Wing Fung & Hu, Junlei, 2020. "Pareto-optimal insurance contracts with premium budget and minimum charge constraints," Insurance: Mathematics and Economics, Elsevier, vol. 95(C), pages 17-27.
    3. Jiang, Wenjun & Hong, Hanping & Ren, Jiandong, 2021. "Pareto-optimal reinsurance policies with maximal synergy," Insurance: Mathematics and Economics, Elsevier, vol. 96(C), pages 185-198.
    4. Anthropelos, Michail & Boonen, Tim J., 2020. "Nash equilibria in optimal reinsurance bargaining," Insurance: Mathematics and Economics, Elsevier, vol. 93(C), pages 196-205.
    5. Corina Birghila & Tim J. Boonen & Mario Ghossoub, 2023. "Optimal insurance under maxmin expected utility," Finance and Stochastics, Springer, vol. 27(2), pages 467-501, April.
    6. Chi, Yichun & Zhuang, Sheng Chao, 2022. "Regret-based optimal insurance design," Insurance: Mathematics and Economics, Elsevier, vol. 102(C), pages 22-41.
    7. Ghossoub, Mario & Jiang, Wenjun & Ren, Jiandong, 2022. "Pareto-optimal reinsurance under individual risk constraints," Insurance: Mathematics and Economics, Elsevier, vol. 107(C), pages 307-325.
    8. Cheung, Ka Chun & Yam, Sheung Chi Phillip & Zhang, Yiying, 2019. "Risk-adjusted Bowley reinsurance under distorted probabilities," Insurance: Mathematics and Economics, Elsevier, vol. 86(C), pages 64-72.
    9. Jiang, Wenjun & Ren, Jiandong & Yang, Chen & Hong, Hanping, 2019. "On optimal reinsurance treaties in cooperative game under heterogeneous beliefs," Insurance: Mathematics and Economics, Elsevier, vol. 85(C), pages 173-184.
    10. Cao, Jingyi & Li, Dongchen & Young, Virginia R. & Zou, Bin, 2023. "Reinsurance games with two reinsurers: Tree versus chain," European Journal of Operational Research, Elsevier, vol. 310(2), pages 928-941.
    11. Boonen, Tim J. & Tan, Ken Seng & Zhuang, Sheng Chao, 2021. "Optimal reinsurance with multiple reinsurers: Competitive pricing and coalition stability," Insurance: Mathematics and Economics, Elsevier, vol. 101(PB), pages 302-319.
    12. Wang, Qiuqi & Wang, Ruodu & Zitikis, Ričardas, 2022. "Risk measures induced by efficient insurance contracts," Insurance: Mathematics and Economics, Elsevier, vol. 103(C), pages 56-65.
    13. Boonen, Tim J., 2016. "Nash equilibria of Over-The-Counter bargaining for insurance risk redistributions: The role of a regulator," European Journal of Operational Research, Elsevier, vol. 250(3), pages 955-965.
    14. Lu, Zhiyi & Meng, Shengwang & Liu, Leping & Han, Ziqi, 2018. "Optimal insurance design under background risk with dependence," Insurance: Mathematics and Economics, Elsevier, vol. 80(C), pages 15-28.
    15. Asimit, Vali & Boonen, Tim J., 2018. "Insurance with multiple insurers: A game-theoretic approach," European Journal of Operational Research, Elsevier, vol. 267(2), pages 778-790.
    16. Walter Trockel, 1999. "Integrating the Nash Program into Mechanism Theory," UCLA Economics Working Papers 787, UCLA Department of Economics.
    17. Boonen, Tim J. & Ghossoub, Mario, 2023. "Bowley vs. Pareto optima in reinsurance contracting," European Journal of Operational Research, Elsevier, vol. 307(1), pages 382-391.
    18. Ghossoub, Mario, 2019. "Budget-constrained optimal insurance with belief heterogeneity," Insurance: Mathematics and Economics, Elsevier, vol. 89(C), pages 79-91.
    19. Alfredo Valencia-Toledo & Juan Vidal-Puga, 2020. "A sequential bargaining protocol for land rental arrangements," Review of Economic Design, Springer;Society for Economic Design, vol. 24(1), pages 65-99, June.
    20. Joan-Maria Esteban & József Sákovics, 2005. "A Theory of Agreements in the Shadow of Conflict," Working Papers 255, Barcelona School of Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:295:y:2021:i:2:p:587-603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.