IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v289y2021i2p611-627.html
   My bibliography  Save this article

A unified approach to non-radial graph models in data envelopment analysis: common features, geometry, and duality

Author

Listed:
  • Halická, Margaréta
  • Trnovská, Mária

Abstract

In data envelopment analysis (DEA), non-radial graph models represent an important class characterized by the independent treatment of each input and output factor in the efficiency measurement. The extensive literature on this topic often analyses individual models in isolation, so much so that the same model may be known under different names due to alternative formulations of different authors. In this paper, a unified analysis of non-radial graph models is offered, viewing each of them via two equivalent schemes: the slack-variables scheme and the Russell-type scheme. Under these schemes, the properties common to the whole class are specified and justified. Along with the two envelopment form schemes, a general dual (multiplier) form is presented. Primal-dual relationships between the envelopment and multiplier non-radial models are analyzed in order to reveal new useful properties and insights.

Suggested Citation

  • Halická, Margaréta & Trnovská, Mária, 2021. "A unified approach to non-radial graph models in data envelopment analysis: common features, geometry, and duality," European Journal of Operational Research, Elsevier, vol. 289(2), pages 611-627.
  • Handle: RePEc:eee:ejores:v:289:y:2021:i:2:p:611-627
    DOI: 10.1016/j.ejor.2020.07.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720306305
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.07.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. R. Russell & William Schworm, 2009. "Axiomatic foundations of efficiency measurement on data-generated technologies," Journal of Productivity Analysis, Springer, vol. 31(2), pages 77-86, April.
    2. Cooper, W.W. & Huang, Zhimin & Li, Susan X. & Parker, Barnett R. & Pastor, Jesus T., 2007. "Efficiency aggregation with enhanced Russell measures in data envelopment analysis," Socio-Economic Planning Sciences, Elsevier, vol. 41(1), pages 1-21, March.
    3. Juo, Jia-Ching & Fu, Tsu-Tan & Yu, Ming-Miin & Lin, Yu-Hui, 2016. "Non-radial profit performance: An application to Taiwanese banks," Omega, Elsevier, vol. 65(C), pages 111-121.
    4. Krivonozhko, Vladimir E. & Førsund, Finn R. & Lychev, Andrey V., 2014. "Measurement of returns to scale using non-radial DEA models," European Journal of Operational Research, Elsevier, vol. 232(3), pages 664-670.
    5. Lukas Steinmann & Peter Zweifel, 2001. "The Range Adjusted Measure (RAM) in DEA: Comment," Journal of Productivity Analysis, Springer, vol. 15(2), pages 139-144, March.
    6. Aparicio, Juan & Pastor, Jesus T. & Ray, Subhash C., 2013. "An overall measure of technical inefficiency at the firm and at the industry level: The ‘lost profit on outlay’," European Journal of Operational Research, Elsevier, vol. 226(1), pages 154-162.
    7. Mehdiloozad, Mahmood & Mirdehghan, S. Morteza & Sahoo, Biresh K. & Roshdi, Israfil, 2015. "On the identification of the global reference set in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 245(3), pages 779-788.
    8. Aparicio, Juan & Pastor, Jesus T. & Vidal, Fernando, 2016. "The weighted additive distance function," European Journal of Operational Research, Elsevier, vol. 254(1), pages 338-346.
    9. W. Cooper & L. Seiford & K. Tone & J. Zhu, 2007. "Some models and measures for evaluating performances with DEA: past accomplishments and future prospects," Journal of Productivity Analysis, Springer, vol. 28(3), pages 151-163, December.
    10. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    11. W. Briec & J. B. Lesourd, 1999. "Metric Distance Function and Profit: Some Duality Results," Journal of Optimization Theory and Applications, Springer, vol. 101(1), pages 15-33, April.
    12. William Cooper & Jesús Pastor & Fernando Borras & Juan Aparicio & Diego Pastor, 2011. "BAM: a bounded adjusted measure of efficiency for use with bounded additive models," Journal of Productivity Analysis, Springer, vol. 35(2), pages 85-94, April.
    13. Pastor, J. T. & Ruiz, J. L. & Sirvent, I., 1999. "An enhanced DEA Russell graph efficiency measure," European Journal of Operational Research, Elsevier, vol. 115(3), pages 596-607, June.
    14. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    15. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2009. "An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties," European Journal of Operational Research, Elsevier, vol. 196(2), pages 764-794, July.
    16. Roshdi, Israfil & Hasannasab, Maryam & Margaritis, Dimitris & Rouse, Paul, 2018. "Generalised weak disposability and efficiency measurement in environmental technologies," European Journal of Operational Research, Elsevier, vol. 266(3), pages 1000-1012.
    17. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2007. "Measurement of returns to scale using a non-radial DEA model: A range-adjusted measure approach," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1918-1946, February.
    18. William Cooper & Kyung Park & Jesus Pastor, 1999. "RAM: A Range Adjusted Measure of Inefficiency for Use with Additive Models, and Relations to Other Models and Measures in DEA," Journal of Productivity Analysis, Springer, vol. 11(1), pages 5-42, February.
    19. Chen, Kun & Zhu, Joe, 2020. "Additive slacks-based measure: Computational strategy and extension to network DEA," Omega, Elsevier, vol. 91(C).
    20. Jesus Pastor & C. Lovell & Juan Aparicio, 2012. "Families of linear efficiency programs based on Debreu’s loss function," Journal of Productivity Analysis, Springer, vol. 38(2), pages 109-120, October.
    21. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2007. "Computational strategy for Russell measure in DEA: Second-order cone programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 459-471, July.
    22. R. Russell & William Schworm, 2011. "Properties of inefficiency indexes on 〈input, output〉 space," Journal of Productivity Analysis, Springer, vol. 36(2), pages 143-156, October.
    23. Tone, Kaoru, 2002. "A slacks-based measure of super-efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 143(1), pages 32-41, November.
    24. Chiang Kao, 2017. "Network Data Envelopment Analysis," International Series in Operations Research and Management Science, Springer, number 978-3-319-31718-2, December.
    25. Cooper, W.W. & Pastor, Jesus T. & Aparicio, Juan & Borras, Fernando, 2011. "Decomposing profit inefficiency in DEA through the weighted additive model," European Journal of Operational Research, Elsevier, vol. 212(2), pages 411-416, July.
    26. Steven Levkoff & R. Russell & William Schworm, 2012. "Boundary problems with the “Russell” graph measure of technical efficiency: a refinement," Journal of Productivity Analysis, Springer, vol. 37(3), pages 239-248, June.
    27. R. Robert Russell & William Schworm, 2018. "Technological inefficiency indexes: a binary taxonomy and a generic theorem," Journal of Productivity Analysis, Springer, vol. 49(1), pages 17-23, February.
    28. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    29. Charnes, A. & Cooper, W. W. & Golany, B. & Seiford, L. & Stutz, J., 1985. "Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions," Journal of Econometrics, Elsevier, vol. 30(1-2), pages 91-107.
    30. Kleine, A., 2004. "A general model framework for DEA," Omega, Elsevier, vol. 32(1), pages 17-23, February.
    31. Tone, Kaoru, 2001. "A slacks-based measure of efficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 130(3), pages 498-509, May.
    32. Du, Juan & Liang, Liang & Zhu, Joe, 2010. "A slacks-based measure of super-efficiency in data envelopment analysis: A comment," European Journal of Operational Research, Elsevier, vol. 204(3), pages 694-697, August.
    33. William W. Cooper & Lawrence M. Seiford & Kaoru Tone, 2007. "Data Envelopment Analysis," Springer Books, Springer, edition 0, number 978-0-387-45283-8, November.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Aparicio, Juan & Monge, Juan F. & Ramón, Nuria, 2021. "A new measure of technical efficiency in data envelopment analysis based on the maximization of hypervolumes: Benchmarking, properties and computational aspects," European Journal of Operational Research, Elsevier, vol. 293(1), pages 263-275.
    2. Halická, Margaréta & Trnovská, Mária, 2018. "The Russell measure model: Computational aspects, duality, and profit efficiency," European Journal of Operational Research, Elsevier, vol. 268(1), pages 386-397.
    3. Alcaraz, Javier & Anton-Sanchez, Laura & Aparicio, Juan & Monge, Juan F. & Ramón, Nuria, 2021. "Russell Graph efficiency measures in Data Envelopment Analysis: The multiplicative approach," European Journal of Operational Research, Elsevier, vol. 292(2), pages 663-674.
    4. Halická, Margaréta & Trnovská, Mária & Černý, Aleš, 2024. "A unified approach to radial, hyperbolic, and directional efficiency measurement in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 312(1), pages 298-314.
    5. Barbero, Javier & Zofío, José L., 2023. "The measurement of profit, profitability, cost and revenue efficiency through data envelopment analysis: A comparison of models using BenchmarkingEconomicEfficiency.jl," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    6. Juan Aparicio & José L. Zofío & Jesús T. Pastor, 2023. "Decomposing Economic Efficiency into Technical and Allocative Components: An Essential Property," Journal of Optimization Theory and Applications, Springer, vol. 197(1), pages 98-129, April.
    7. Pastor, Jesus T. & Zofío, José Luis & Aparicio, Juan & Pastor, D., 2023. "A general direct approach for decomposing profit inefficiency," Omega, Elsevier, vol. 119(C).
    8. Aparicio, Juan & Monge, Juan F., 2022. "The generalized range adjusted measure in data envelopment analysis: Properties, computational aspects and duality," European Journal of Operational Research, Elsevier, vol. 302(2), pages 621-632.
    9. Rafael Benítez & Vicente Coll-Serrano & Vicente J. Bolós, 2021. "deaR-Shiny: An Interactive Web App for Data Envelopment Analysis," Sustainability, MDPI, vol. 13(12), pages 1-19, June.
    10. R. Robert Russell & William Schworm, 2018. "Technological inefficiency indexes: a binary taxonomy and a generic theorem," Journal of Productivity Analysis, Springer, vol. 49(1), pages 17-23, February.
    11. Kao, Chiang, 2022. "Closest targets in the slacks-based measure of efficiency for production units with multi-period data," European Journal of Operational Research, Elsevier, vol. 297(3), pages 1042-1054.
    12. Gerami, Javad & Mozaffari, Mohammad Reza & Wanke, Peter F. & Correa, Henrique L., 2022. "Improving information reliability of non-radial value efficiency analysis: An additive slacks based measure approach," European Journal of Operational Research, Elsevier, vol. 298(3), pages 967-978.
    13. Rashidi, Kamran & Cullinane, Kevin, 2019. "Evaluating the sustainability of national logistics performance using Data Envelopment Analysis," Transport Policy, Elsevier, vol. 74(C), pages 35-46.
    14. Juan Aparicio & Magdalena Kapelko & Juan F. Monge, 2020. "A Well-Defined Composite Indicator: An Application to Corporate Social Responsibility," Journal of Optimization Theory and Applications, Springer, vol. 186(1), pages 299-323, July.
    15. Sueyoshi, Toshiyuki & Sekitani, Kazuyuki, 2009. "An occurrence of multiple projections in DEA-based measurement of technical efficiency: Theoretical comparison among DEA models from desirable properties," European Journal of Operational Research, Elsevier, vol. 196(2), pages 764-794, July.
    16. R. Russell & William Schworm, 2011. "Properties of inefficiency indexes on 〈input, output〉 space," Journal of Productivity Analysis, Springer, vol. 36(2), pages 143-156, October.
    17. Aparicio, Juan & Kapelko, Magdalena, 2019. "Accounting for slacks to measure dynamic inefficiency in data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 278(2), pages 463-471.
    18. Juo, Jia-Ching & Fu, Tsu-Tan & Yu, Ming-Miin & Lin, Yu-Hui, 2016. "Non-radial profit performance: An application to Taiwanese banks," Omega, Elsevier, vol. 65(C), pages 111-121.
    19. Gómez-Calvet, Roberto & Conesa, David & Gómez-Calvet, Ana Rosa & Tortosa-Ausina, Emili, 2014. "Energy efficiency in the European Union: What can be learned from the joint application of directional distance functions and slacks-based measures?," Applied Energy, Elsevier, vol. 132(C), pages 137-154.
    20. Ioannis E. Tsolas, 2020. "Financial Performance Assessment of Construction Firms by Means of RAM-Based Composite Indicators," Mathematics, MDPI, vol. 8(8), pages 1-16, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:289:y:2021:i:2:p:611-627. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.