IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v285y2020i1p34-47.html
   My bibliography  Save this article

Optimal procurement of flexibility services within electricity distribution networks

Author

Listed:
  • Laur, Arnaud
  • Nieto-Martin, Jesus
  • Bunn, Derek W.
  • Vicente-Pastor, Alejandro

Abstract

The increased injection of volatile renewable energy at local levels into the electricity grid is forcing the distribution network operators to seek participation in emerging service markets in order to obtain the flexibility required to balance their systems. However, the distribution companies lack experience in designing new market arrangements. We consider a market framework wherein a proactive distribution company is willing to purchase reserve capacity for overload management, using a two-part tariff. The problem is modelled as a three-stage stochastic market including Day-Ahead, Intra-Day and Real-Time, with uncertainty on both demand and generation. After assessing our formulation, we discuss the impact of risk-aversion at each stage with an objective function based on CVaR. Finally, different Intra-Day clearing horizons and delivery settings are evaluated. The results show that risk-aversion close to Real-Time becomes the main driver for decision makers and that early hedging strategies lead to sub-optimal solutions.

Suggested Citation

  • Laur, Arnaud & Nieto-Martin, Jesus & Bunn, Derek W. & Vicente-Pastor, Alejandro, 2020. "Optimal procurement of flexibility services within electricity distribution networks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 34-47.
  • Handle: RePEc:eee:ejores:v:285:y:2020:i:1:p:34-47
    DOI: 10.1016/j.ejor.2018.11.031
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718309561
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.11.031?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Homem-de-Mello, Tito & Pagnoncelli, Bernardo K., 2016. "Risk aversion in multistage stochastic programming: A modeling and algorithmic perspective," European Journal of Operational Research, Elsevier, vol. 249(1), pages 188-199.
    2. Bjørndal, Endre & Bjørndal, Mette & Cai, Hong & Panos, Evangelos, 2018. "Hybrid pricing in a coupled European power market with more wind power," European Journal of Operational Research, Elsevier, vol. 264(3), pages 919-931.
    3. Chaves-Ávila, J.P. & Fernandes, C., 2015. "The Spanish intraday market design: A successful solution to balance renewable generation?," Renewable Energy, Elsevier, vol. 74(C), pages 422-432.
    4. Olivella-Rosell, Pol & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Sumper, Andreas & Ottesen, Stig Ødegaard & Vidal-Clos, Josep-Andreu & Villafáfila-Robles, Roberto, 2018. "Optimization problem for meeting distribution system operator requests in local flexibility markets with distributed energy resources," Applied Energy, Elsevier, vol. 210(C), pages 881-895.
    5. Scharff, Richard & Amelin, Mikael, 2016. "Trading behaviour on the continuous intraday market Elbas," Energy Policy, Elsevier, vol. 88(C), pages 544-557.
    6. Najafi, Amir Abbas & Mushakhian, Siamak, 2015. "Multi-stage stochastic mean–semivariance–CVaR portfolio optimization under transaction costs," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 445-458.
    7. Devine, Mel T. & Bertsch, Valentin, 2018. "Examining the benefits of load shedding strategies using a rolling-horizon stochastic mixed complementarity equilibrium model," European Journal of Operational Research, Elsevier, vol. 267(2), pages 643-658.
    8. Ruester, Sophia & Schwenen, Sebastian & Batlle, Carlos & Pérez-Arriaga, Ignacio, 2014. "From distribution networks to smart distribution systems: Rethinking the regulation of European electricity DSOs," Utilities Policy, Elsevier, vol. 31(C), pages 229-237.
    9. Victor M. Zavala & Kibaek Kim & Mihai Anitescu & John Birge, 2017. "A Stochastic Electricity Market Clearing Formulation with Consistent Pricing Properties," Operations Research, INFORMS, vol. 65(3), pages 557-576, June.
    10. Laureano Escudero & Araceli Garín & María Merino & Gloria Pérez, 2007. "The value of the stochastic solution in multistage problems," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 48-64, July.
    11. Benjamin, Richard, 2013. "A two-part tariff for financing transmission expansion," Utilities Policy, Elsevier, vol. 27(C), pages 98-107.
    12. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and Dynamic Convex Risk Measures," SFB 649 Discussion Papers SFB649DP2005-006, Sonderforschungsbereich 649, Humboldt University, Berlin, Germany.
    13. Torbat, Sheida & Khashei, Mehdi & Bijari, Mehdi, 2018. "A hybrid probabilistic fuzzy ARIMA model for consumption forecasting in commodity markets," Economic Analysis and Policy, Elsevier, vol. 58(C), pages 22-31.
    14. Hu, Jing & Harmsen, Robert & Crijns-Graus, Wina & Worrell, Ernst & van den Broek, Machteld, 2018. "Identifying barriers to large-scale integration of variable renewable electricity into the electricity market: A literature review of market design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2181-2195.
    15. Antweiler, Werner, 2017. "A two-part feed-in-tariff for intermittent electricity generation," Energy Economics, Elsevier, vol. 65(C), pages 458-470.
    16. Sovacool, Benjamin K. & Kivimaa, Paula & Hielscher, Sabine & Jenkins, Kirsten, 2017. "Vulnerability and resistance in the United Kingdom's smart meter transition," Energy Policy, Elsevier, vol. 109(C), pages 767-781.
    17. Mohan, Vivek & Singh, Jai Govind & Ongsakul, Weerakorn, 2015. "An efficient two stage stochastic optimal energy and reserve management in a microgrid," Applied Energy, Elsevier, vol. 160(C), pages 28-38.
    18. Morales, Juan M. & Zugno, Marco & Pineda, Salvador & Pinson, Pierre, 2014. "Electricity market clearing with improved scheduling of stochastic production," European Journal of Operational Research, Elsevier, vol. 235(3), pages 765-774.
    19. Kai Detlefsen & Giacomo Scandolo, 2005. "Conditional and dynamic convex risk measures," Finance and Stochastics, Springer, vol. 9(4), pages 539-561, October.
    20. Chen, J.J. & Wu, Q.H. & Zhang, L.L. & Wu, P.Z., 2017. "Multi-objective mean–variance–skewness model for nonconvex and stochastic optimal power flow considering wind power and load uncertainties," European Journal of Operational Research, Elsevier, vol. 263(2), pages 719-732.
    21. de Joode, J. & Jansen, J.C. & van der Welle, A.J. & Scheepers, M.J.J., 2009. "Increasing penetration of renewable and distributed electricity generation and the need for different network regulation," Energy Policy, Elsevier, vol. 37(8), pages 2907-2915, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Zeiselmair & Simon Köppl, 2021. "Constrained Optimization as the Allocation Method in Local Flexibility Markets," Energies, MDPI, vol. 14(13), pages 1-21, June.
    2. Hermann, Alexander & Jensen, Tue Vissing & Østergaard, Jacob & Kazempour, Jalal, 2022. "A complementarity model for electric power transmission-distribution coordination under uncertainty," European Journal of Operational Research, Elsevier, vol. 299(1), pages 313-329.
    3. Skolfield, J. Kyle & Escobedo, Adolfo R., 2022. "Operations research in optimal power flow: A guide to recent and emerging methodologies and applications," European Journal of Operational Research, Elsevier, vol. 300(2), pages 387-404.
    4. Varawala, Lamia & Dán, György & Hesamzadeh, Mohammad Reza & Baldick, Ross, 2023. "A generalised approach for efficient computation of look ahead security constrained optimal power flow," European Journal of Operational Research, Elsevier, vol. 310(2), pages 477-494.
    5. Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2022. "Short-term risk management of electricity retailers under rising shares of decentralized solar generation," Energy Economics, Elsevier, vol. 109(C).
    6. Juan Sebastian Roncancio & José Vuelvas & Diego Patino & Carlos Adrián Correa-Flórez, 2022. "Flower Greenhouse Energy Management to Offer Local Flexibility Markets," Energies, MDPI, vol. 15(13), pages 1-20, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva-Rodriguez, Lina & Sanjab, Anibal & Fumagalli, Elena & Virag, Ana & Gibescu, Madeleine, 2022. "Short term wholesale electricity market designs: A review of identified challenges and promising solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    2. Lina Silva-Rodriguez & Anibal Sanjab & Elena Fumagalli & Ana Virag & Madeleine Gibescu, 2020. "Short Term Electricity Market Designs: Identified Challenges and Promising Solutions," Papers 2011.04587, arXiv.org.
    3. Russo, Marianna & Kraft, Emil & Bertsch, Valentin & Keles, Dogan, 2022. "Short-term risk management of electricity retailers under rising shares of decentralized solar generation," Energy Economics, Elsevier, vol. 109(C).
    4. Bäuerle, Nicole & Glauner, Alexander, 2022. "Markov decision processes with recursive risk measures," European Journal of Operational Research, Elsevier, vol. 296(3), pages 953-966.
    5. Nicole Bauerle & Alexander Glauner, 2020. "Markov Decision Processes with Recursive Risk Measures," Papers 2010.07220, arXiv.org.
    6. Karsten Neuhoff & Sophia Rüster & Sebastian Schwenen, 2015. "Power Market Design beyond 2020: Time to Revisit Key Elements?," Discussion Papers of DIW Berlin 1456, DIW Berlin, German Institute for Economic Research.
    7. Zachary Feinstein & Birgit Rudloff, 2018. "Scalar multivariate risk measures with a single eligible asset," Papers 1807.10694, arXiv.org, revised Feb 2021.
    8. Qinyu Wu & Fan Yang & Ping Zhang, 2023. "Conditional generalized quantiles based on expected utility model and equivalent characterization of properties," Papers 2301.12420, arXiv.org.
    9. Fei Sun & Jingchao Li & Jieming Zhou, 2018. "Dynamic risk measures with fluctuation of market volatility under Bochne-Lebesgue space," Papers 1806.01166, arXiv.org, revised Mar 2024.
    10. Ocker, Fabian & Jaenisch, Vincent, 2020. "The way towards European electricity intraday auctions – Status quo and future developments," Energy Policy, Elsevier, vol. 145(C).
    11. Leitner Johannes, 2007. "Pricing and hedging with globally and instantaneously vanishing risk," Statistics & Risk Modeling, De Gruyter, vol. 25(4/2007), pages 1-22, October.
    12. Tomasz R. Bielecki & Igor Cialenco & Shibi Feng, 2018. "A Dynamic Model of Central Counterparty Risk," Papers 1803.02012, arXiv.org.
    13. Jocelyne Bion-Nadal, 2006. "Time Consistent Dynamic Risk Processes, Cadlag Modification," Papers math/0607212, arXiv.org.
    14. Föllmer Hans, 2014. "Spatial risk measures and their local specification: The locally law-invariant case," Statistics & Risk Modeling, De Gruyter, vol. 31(1), pages 1-23, March.
    15. Bellenbaum, Julia & Höckner, Jonas & Weber, Christoph, 2022. "Designing flexibility procurement markets for congestion management – investigating two-stage procurement auctions," Energy Economics, Elsevier, vol. 106(C).
    16. Geissel Sebastian & Sass Jörn & Seifried Frank Thomas, 2018. "Optimal expected utility risk measures," Statistics & Risk Modeling, De Gruyter, vol. 35(1-2), pages 73-87, January.
    17. Dan A. Iancu & Marek Petrik & Dharmashankar Subramanian, 2015. "Tight Approximations of Dynamic Risk Measures," Mathematics of Operations Research, INFORMS, vol. 40(3), pages 655-682, March.
    18. Ji, Ronglin & Shi, Xuejun & Wang, Shijie & Zhou, Jinming, 2022. "Convexity and sublinearity of g-expectations," Statistics & Probability Letters, Elsevier, vol. 189(C).
    19. Acciaio, Beatrice & Föllmer, Hans & Penner, Irina, 2012. "Risk assessment for uncertain cash flows: model ambiguity, discounting ambiguity, and the role of bubbles," LSE Research Online Documents on Economics 50118, London School of Economics and Political Science, LSE Library.
    20. Ansaripoor, Amir H. & Oliveira, Fernando S., 2018. "Flexible lease contracts in the fleet replacement problem with alternative fuel vehicles: A real-options approach," European Journal of Operational Research, Elsevier, vol. 266(1), pages 316-327.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:285:y:2020:i:1:p:34-47. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.