IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v256y2015icp445-458.html
   My bibliography  Save this article

Multi-stage stochastic mean–semivariance–CVaR portfolio optimization under transaction costs

Author

Listed:
  • Najafi, Amir Abbas
  • Mushakhian, Siamak

Abstract

In this paper, we present a model for portfolio selection, characterized on the basis of three parameters: the expected value, semivariance, and Conditional Value-at-Risk (CVaR) at a specified confidence level. In order to solve the proposed model, we design a hybrid of genetic algorithm (GA) and particle swarm optimization (PSO) algorithm. Because the effectiveness of meta-heuristic algorithms significantly depends on the proper choice of parameters, a Taguchi experimental design method is applied to set the suitable values of parameters to improve the hybrid algorithm performance. Finally, some numerical examples are given to illustrate the effectiveness of the proposed algorithm.

Suggested Citation

  • Najafi, Amir Abbas & Mushakhian, Siamak, 2015. "Multi-stage stochastic mean–semivariance–CVaR portfolio optimization under transaction costs," Applied Mathematics and Computation, Elsevier, vol. 256(C), pages 445-458.
  • Handle: RePEc:eee:apmaco:v:256:y:2015:i:c:p:445-458
    DOI: 10.1016/j.amc.2015.01.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315000806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.01.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Diana Roman & Kenneth Darby-Dowman & Gautam Mitra, 2007. "Mean-risk models using two risk measures: a multi-objective approach," Quantitative Finance, Taylor & Francis Journals, vol. 7(4), pages 443-458.
    2. Ruiz, Ruben & Maroto, Concepcion, 2006. "A genetic algorithm for hybrid flowshops with sequence dependent setup times and machine eligibility," European Journal of Operational Research, Elsevier, vol. 169(3), pages 781-800, March.
    3. J. G. Kallberg & R. W. White & W. T. Ziemba, 1982. "Short Term Financial Planning under Uncertainty," Management Science, INFORMS, vol. 28(6), pages 670-682, June.
    4. Hibiki, Norio, 2006. "Multi-period stochastic optimization models for dynamic asset allocation," Journal of Banking & Finance, Elsevier, vol. 30(2), pages 365-390, February.
    5. J. Baixauli-Soler & Eva Alfaro-Cid & Matilde Fernandez-Blanco, 2011. "Mean-VaR Portfolio Selection Under Real Constraints," Computational Economics, Springer;Society for Computational Economics, vol. 37(2), pages 113-131, February.
    6. Gulpinar, Nalan & Rustem, Berc, 2007. "Worst-case robust decisions for multi-period mean-variance portfolio optimization," European Journal of Operational Research, Elsevier, vol. 183(3), pages 981-1000, December.
    7. Yu, Jing-Rung & Lee, Wen-Yi, 2011. "Portfolio rebalancing model using multiple criteria," European Journal of Operational Research, Elsevier, vol. 209(2), pages 166-175, March.
    8. Giove, Silvio & Funari, Stefania & Nardelli, Carla, 2006. "An interval portfolio selection problem based on regret function," European Journal of Operational Research, Elsevier, vol. 170(1), pages 253-264, April.
    9. Zhang, Wei-Guo & Liu, Yong-Jun & Xu, Wei-Jun, 2012. "A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 222(2), pages 341-349.
    10. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    11. Duan Li & Wan‐Lung Ng, 2000. "Optimal Dynamic Portfolio Selection: Multiperiod Mean‐Variance Formulation," Mathematical Finance, Wiley Blackwell, vol. 10(3), pages 387-406, July.
    12. David R. Cariño & Terry Kent & David H. Myers & Celine Stacy & Mike Sylvanus & Andrew L. Turner & Kouji Watanabe & William T. Ziemba, 1994. "The Russell-Yasuda Kasai Model: An Asset/Liability Model for a Japanese Insurance Company Using Multistage Stochastic Programming," Interfaces, INFORMS, vol. 24(1), pages 29-49, February.
    13. Yuichi Takano & Jun-ya Gotoh, 2011. "Constant Rebalanced Portfolio Optimization Under Nonlinear Transaction Costs," Asia-Pacific Financial Markets, Springer;Japanese Association of Financial Economics and Engineering, vol. 18(2), pages 191-211, May.
    14. John M. Mulvey & Hercules Vladimirou, 1992. "Stochastic Network Programming for Financial Planning Problems," Management Science, INFORMS, vol. 38(11), pages 1642-1664, November.
    15. Szego, Giorgio P., 2002. "No more VaR (this is not a typo)," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1247-1251, July.
    16. Rockafellar, R. Tyrrell & Uryasev, Stanislav, 2002. "Conditional value-at-risk for general loss distributions," Journal of Banking & Finance, Elsevier, vol. 26(7), pages 1443-1471, July.
    17. Stone, Bernell K, 1973. "A General Class of Three-Parameter Risk Measures," Journal of Finance, American Finance Association, vol. 28(3), pages 675-685, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    2. Najafi, Amir Abbas & Pourahmadi, Zahra, 2016. "An efficient heuristic method for dynamic portfolio selection problem under transaction costs and uncertain conditions," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 448(C), pages 154-162.
    3. Abdelouahed Hamdi & Arezou Karimi & Farshid Mehrdoust & Samir Brahim Belhaouari, 2022. "Portfolio Selection Problem Using CVaR Risk Measures Equipped with DEA, PSO, and ICA Algorithms," Mathematics, MDPI, vol. 10(15), pages 1-26, August.
    4. Xiaoxia Huang & Xuting Wang, 2019. "Portfolio Investment with Options Based on Uncertainty Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 18(03), pages 929-952, May.
    5. Xinsheng Xu & Zhiqing Meng & Ping Ji & Chuangyin Dang & Hongwei Wang, 2016. "On the newsvendor model with conditional Value-at-Risk of opportunity loss," International Journal of Production Research, Taylor & Francis Journals, vol. 54(8), pages 2449-2458, April.
    6. Reus, Lorenzo & Pagnoncelli, Bernardo & Armstrong, Margaret, 2019. "Better management of production incidents in mining using multistage stochastic optimization," Resources Policy, Elsevier, vol. 63(C), pages 1-1.
    7. Laur, Arnaud & Nieto-Martin, Jesus & Bunn, Derek W. & Vicente-Pastor, Alejandro, 2020. "Optimal procurement of flexibility services within electricity distribution networks," European Journal of Operational Research, Elsevier, vol. 285(1), pages 34-47.
    8. Huang, Xiaoxia & Di, Hao, 2016. "Uncertain portfolio selection with background risk," Applied Mathematics and Computation, Elsevier, vol. 276(C), pages 284-296.
    9. Pejman Peykani & Mojtaba Nouri & Mir Saman Pishvaee & Camelia Oprean-Stan & Emran Mohammadi, 2023. "Credibilistic Multi-Period Mean-Entropy Rolling Portfolio Optimization Problem Based on Multi-Stage Scenario Tree," Mathematics, MDPI, vol. 11(18), pages 1-23, September.
    10. Kashanian, Motahareh & Pishvaee, Mir Saman & Sahebi, Hadi, 2020. "Sustainable biomass portfolio sourcing plan using multi-stage stochastic programming," Energy, Elsevier, vol. 204(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Liu, Yong-Jun & Zhang, Wei-Guo, 2015. "A multi-period fuzzy portfolio optimization model with minimum transaction lots," European Journal of Operational Research, Elsevier, vol. 242(3), pages 933-941.
    2. Zhang, Wei-Guo & Liu, Yong-Jun & Xu, Wei-Jun, 2012. "A possibilistic mean-semivariance-entropy model for multi-period portfolio selection with transaction costs," European Journal of Operational Research, Elsevier, vol. 222(2), pages 341-349.
    3. Gao, Jianjun & Xiong, Yan & Li, Duan, 2016. "Dynamic mean-risk portfolio selection with multiple risk measures in continuous-time," European Journal of Operational Research, Elsevier, vol. 249(2), pages 647-656.
    4. Yong-Jun Liu & Wei-Guo Zhang, 2018. "Multiperiod Fuzzy Portfolio Selection Optimization Model Based on Possibility Theory," International Journal of Information Technology & Decision Making (IJITDM), World Scientific Publishing Co. Pte. Ltd., vol. 17(03), pages 941-968, May.
    5. Yuichi Takano & Renata Sotirov, 2012. "A polynomial optimization approach to constant rebalanced portfolio selection," Computational Optimization and Applications, Springer, vol. 52(3), pages 645-666, July.
    6. Ruili Sun & Tiefeng Ma & Shuangzhe Liu & Milind Sathye, 2019. "Improved Covariance Matrix Estimation for Portfolio Risk Measurement: A Review," JRFM, MDPI, vol. 12(1), pages 1-34, March.
    7. Guo, Sini & Yu, Lean & Li, Xiang & Kar, Samarjit, 2016. "Fuzzy multi-period portfolio selection with different investment horizons," European Journal of Operational Research, Elsevier, vol. 254(3), pages 1026-1035.
    8. Zhang Peng & Gong Heshan & Lan Weiting, 2017. "Multi-Period Mean-Absolute Deviation Fuzzy Portfolio Selection Model with Entropy Constraints," Journal of Systems Science and Information, De Gruyter, vol. 4(5), pages 428-443, October.
    9. van Staden, Pieter M. & Dang, Duy-Minh & Forsyth, Peter A., 2021. "The surprising robustness of dynamic Mean-Variance portfolio optimization to model misspecification errors," European Journal of Operational Research, Elsevier, vol. 289(2), pages 774-792.
    10. K. Liagkouras & K. Metaxiotis, 2019. "Improving the performance of evolutionary algorithms: a new approach utilizing information from the evolutionary process and its application to the fuzzy portfolio optimization problem," Annals of Operations Research, Springer, vol. 272(1), pages 119-137, January.
    11. P. Kumar & Jyotirmayee Behera & A. K. Bhurjee, 2022. "Solving mean-VaR portfolio selection model with interval-typed random parameter using interval analysis," OPSEARCH, Springer;Operational Research Society of India, vol. 59(1), pages 41-77, March.
    12. Amy V. Puelz, 2002. "A Stochastic Convergence Model for Portfolio Selection," Operations Research, INFORMS, vol. 50(3), pages 462-476, June.
    13. Lwin, Khin T. & Qu, Rong & MacCarthy, Bart L., 2017. "Mean-VaR portfolio optimization: A nonparametric approach," European Journal of Operational Research, Elsevier, vol. 260(2), pages 751-766.
    14. Huang, Dashan & Zhu, Shushang & Fabozzi, Frank J. & Fukushima, Masao, 2010. "Portfolio selection under distributional uncertainty: A relative robust CVaR approach," European Journal of Operational Research, Elsevier, vol. 203(1), pages 185-194, May.
    15. Xu, Qifa & Zhou, Yingying & Jiang, Cuixia & Yu, Keming & Niu, Xufeng, 2016. "A large CVaR-based portfolio selection model with weight constraints," Economic Modelling, Elsevier, vol. 59(C), pages 436-447.
    16. Yu, Jing-Rung & Chiou, W. Paul & Hung, Cing-Hung & Dong, Wen-Kuei & Chang, Yi-Hsuan, 2022. "Dynamic rebalancing portfolio models with analyses of investor sentiment," International Review of Economics & Finance, Elsevier, vol. 77(C), pages 1-13.
    17. Zhang, Wei-Guo & Xiao, Wei-Lin & Xu, Wei-Jun, 2010. "A possibilistic portfolio adjusting model with new added assets," Economic Modelling, Elsevier, vol. 27(1), pages 208-213, January.
    18. Ma, Shuai & Ma, Xiaoteng & Xia, Li, 2023. "A unified algorithm framework for mean-variance optimization in discounted Markov decision processes," European Journal of Operational Research, Elsevier, vol. 311(3), pages 1057-1067.
    19. Youssouf A. F. Toukourou & Franc{c}ois Dufresne, 2015. "ON Integrated Chance Constraints in ALM for Pension Funds," Papers 1503.05343, arXiv.org.
    20. Strub, Moris S. & Li, Duan & Cui, Xiangyu & Gao, Jianjun, 2019. "Discrete-time mean-CVaR portfolio selection and time-consistency induced term structure of the CVaR," Journal of Economic Dynamics and Control, Elsevier, vol. 108(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:256:y:2015:i:c:p:445-458. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.