IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v272y2019i2p780-791.html
   My bibliography  Save this article

On constant elasticity of substitution – Constant elasticity of transformation Directional Distance Functions

Author

Listed:
  • Ravelojaona, Paola

Abstract

This paper aims to present non-linear CES (Constant Elasticity of Substitution)–CET (Constant Elasticity of Transformation) Directional Distance Functions. These measures inherit the structure of the standard Directional Distance Functions and that of the CES–CET technology. These functions allow non-parametric estimation of efficiency scores through linear programming method. Besides, the CES –CET technology gives the opportunity to explore α-returns to scale assumption for the new distance functions. The duality theory is investigated through pseudo profit, cost and revenue functions. The dual standpoint provides non-linear adjusted prices that can occur into non-linear pricing practices. An application is proposed to give an illustrative example of the primal CES–CET Directional Distance Functions.

Suggested Citation

  • Ravelojaona, Paola, 2019. "On constant elasticity of substitution – Constant elasticity of transformation Directional Distance Functions," European Journal of Operational Research, Elsevier, vol. 272(2), pages 780-791.
  • Handle: RePEc:eee:ejores:v:272:y:2019:i:2:p:780-791
    DOI: 10.1016/j.ejor.2018.07.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718306258
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.07.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Robert M. Solow, 1956. "A Contribution to the Theory of Economic Growth," The Quarterly Journal of Economics, President and Fellows of Harvard College, vol. 70(1), pages 65-94.
    2. Henry Tulkens, 2006. "On FDH Efficiency Analysis: Some Methodological Issues and Applications to Retail Banking, Courts and Urban Transit," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 311-342, Springer.
    3. Jean-Paul Chavas & Walter Briec, 2012. "On economic efficiency under non-convexity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(3), pages 671-701, August.
    4. R. Färe & S. Grosskopf & D. Njinkeu, 1988. "Note---On Piecewise Reference Technologies," Management Science, INFORMS, vol. 34(12), pages 1507-1511, December.
    5. W. Briec, 1997. "A Graph-Type Extension of Farrell Technical Efficiency Measure," Journal of Productivity Analysis, Springer, vol. 8(1), pages 95-110, March.
    6. Charnes, A. & Cooper, W. W. & Rhodes, E., 1978. "Measuring the efficiency of decision making units," European Journal of Operational Research, Elsevier, vol. 2(6), pages 429-444, November.
    7. Fare, Rolf & Knox Lovell, C. A., 1978. "Measuring the technical efficiency of production," Journal of Economic Theory, Elsevier, vol. 19(1), pages 150-162, October.
    8. R. G. Chambers & Y. Chung & R. Färe, 1998. "Profit, Directional Distance Functions, and Nerlovian Efficiency," Journal of Optimization Theory and Applications, Springer, vol. 98(2), pages 351-364, August.
    9. Luenberger, David G., 1992. "Benefit functions and duality," Journal of Mathematical Economics, Elsevier, vol. 21(5), pages 461-481.
    10. Dominique Deprins & Léopold Simar & Henry Tulkens, 2006. "Measuring Labor-Efficiency in Post Offices," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 285-309, Springer.
    11. Louisa Andriamasy & Walter Briec & Stephane Mussard, 2016. "On Some Relations between Several Generalized Convex DEA Models," Cahiers de recherche 16-02, Departement d'économique de l'École de gestion à l'Université de Sherbrooke.
    12. Briec, Walter & Liang, Qi Bin, 2011. "On some semilattice structures for production technologies," European Journal of Operational Research, Elsevier, vol. 215(3), pages 740-749, December.
    13. Laurens Cherchye & Timo Kuosmanen & Thierry Post, 2001. "FDH Directional Distance Functions with an Application to European Commercial Banks," Journal of Productivity Analysis, Springer, vol. 15(3), pages 201-215, January.
    14. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    15. Rajiv D. Banker & Ajay Maindiratta, 1986. "Piecewise Loglinear Estimation of Efficient Production Surfaces," Management Science, INFORMS, vol. 32(1), pages 126-135, January.
    16. Rajiv D. Banker & Ajay Maindiratta, 1986. "Erratum to: "Piecewise Loglinear Estimation of Efficient Production Surfaces"," Management Science, INFORMS, vol. 32(3), pages 385-385, March.
    17. Jean-Philippe Boussemart & Walter Briec & Nicolas Peypoch & Christophe Tavéra, 2009. "α-Returns to scale and multi-output production technologies," Post-Print halshs-00418883, HAL.
    18. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Noah J Miller & Jason S Bergtold & Allen M Featherstone, 2019. "Economic elasticities of input substitution using data envelopment analysis," PLOS ONE, Public Library of Science, vol. 14(8), pages 1-15, August.
    2. Chen, Lei & Wang, Ying-Ming, 2020. "DEA target setting approach within the cross efficiency framework," Omega, Elsevier, vol. 96(C).
    3. Walter Briec & Marc Dubois & Stéphane Mussard, 2019. "Technical Efficiency in Firm Games with Constant Returns to Scale and α-Returns to Scale," Working Papers hal-02344310, HAL.
    4. Briec, Walter & Mussard, Stéphane, 2020. "Improvement of technical efficiency of firm groups," European Journal of Operational Research, Elsevier, vol. 283(3), pages 991-1001.
    5. Walter Briec & Kristiaan Kerstens & Ignace Van de Woestyne, 2022. "Nonconvexity in Production and Cost Functions: An Exploratory and Selective Review," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 18, pages 721-754, Springer.
    6. Mussard, Stéphane & Pi Alperin, María Noel, 2021. "Accounting for risk factors on health outcomes: The case of Luxembourg," European Journal of Operational Research, Elsevier, vol. 291(3), pages 1180-1197.
    7. Walter Briec & Marc Dubois & Stéphane Mussard, 2021. "Technical efficiency in firm games with constant returns to scale and $$\alpha $$ α -returns to scale," Annals of Operations Research, Springer, vol. 304(1), pages 35-62, September.
    8. Maolin Cheng, 2019. "A Grey CES Production Function Model and Its Application in Calculating the Contribution Rate of Economic Growth Factors," Complexity, Hindawi, vol. 2019, pages 1-8, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mehdiloo, Mahmood & Podinovski, Victor V., 2021. "Strong, weak and Farrell efficient frontiers of technologies satisfying different production assumptions," European Journal of Operational Research, Elsevier, vol. 294(1), pages 295-311.
    2. Briec, Walter & Fukuyama, Hirofumi & Ravelojaona, Paola, 2021. "Exponential distance function and duality theory," European Journal of Operational Research, Elsevier, vol. 293(3), pages 1002-1014.
    3. Cherchye, L. & Post, G.T., 2001. "Methodological Advances in Dea," ERIM Report Series Research in Management ERS-2001-53-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    4. Pham, Manh D. & Zelenyuk, Valentin, 2019. "Weak disposability in nonparametric production analysis: A new taxonomy of reference technology sets," European Journal of Operational Research, Elsevier, vol. 274(1), pages 186-198.
    5. Jesus Pastor & C. Lovell & Juan Aparicio, 2012. "Families of linear efficiency programs based on Debreu’s loss function," Journal of Productivity Analysis, Springer, vol. 38(2), pages 109-120, October.
    6. Walter Briec & Laurent Cavaignac & Kristiaan Kerstens, 2020. "Input Efficiency Measures: A Generalized, Encompassing Formulation," Operations Research, INFORMS, vol. 68(6), pages 1836-1849, November.
    7. Arnaud Abad & Paola Ravelojaona & Ziyi Shen, 2022. "An exponential analysis of total factor productivity," Working Papers hal-03419905, HAL.
    8. Jean-Philippe Boussemart & Walter Briec & Raluca Parvulescu & Paola Ravelojaona, 2022. "$\Lambda$-Returns to Scale and Individual Minimum Extrapolation Principle," Papers 2212.04724, arXiv.org, revised Dec 2023.
    9. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    10. Maria Silva Portela & Pedro Borges & Emmanuel Thanassoulis, 2003. "Finding Closest Targets in Non-Oriented DEA Models: The Case of Convex and Non-Convex Technologies," Journal of Productivity Analysis, Springer, vol. 19(2), pages 251-269, April.
    11. Fukuyama, Hirofumi & Weber, William L., 2009. "A directional slacks-based measure of technical inefficiency," Socio-Economic Planning Sciences, Elsevier, vol. 43(4), pages 274-287, December.
    12. Youchao Tan & Udaya Shetty & Ali Diabat & T. Pakkala, 2015. "Aggregate directional distance formulation of DEA with integer variables," Annals of Operations Research, Springer, vol. 235(1), pages 741-756, December.
    13. Valentin Zelenyuk, 2023. "Productivity analysis: roots, foundations, trends and perspectives," Journal of Productivity Analysis, Springer, vol. 60(3), pages 229-247, December.
    14. Briec, W., 2000. "An extended Fare-Lovell technical efficiency measure," International Journal of Production Economics, Elsevier, vol. 65(2), pages 191-199, April.
    15. Fukuyama, Hirofumi & Matousek, Roman, 2018. "Nerlovian revenue inefficiency in a bank production context: Evidence from Shinkin banks," European Journal of Operational Research, Elsevier, vol. 271(1), pages 317-330.
    16. Akther, Syed & Fukuyama, Hirofumi & Weber, William L., 2013. "Estimating two-stage network Slacks-based inefficiency: An application to Bangladesh banking," Omega, Elsevier, vol. 41(1), pages 88-96.
    17. Aparicio, Juan & Monge, Juan F. & Ramón, Nuria, 2021. "A new measure of technical efficiency in data envelopment analysis based on the maximization of hypervolumes: Benchmarking, properties and computational aspects," European Journal of Operational Research, Elsevier, vol. 293(1), pages 263-275.
    18. Jean-Paul Chavas & Kwansoo Kim, 2015. "Nonparametric analysis of technology and productivity under non-convexity: a neighborhood-based approach," Journal of Productivity Analysis, Springer, vol. 43(1), pages 59-74, February.
    19. Barros, Carlos Pestana & Peypoch, Nicolas, 2008. "Technical efficiency of thermoelectric power plants," Energy Economics, Elsevier, vol. 30(6), pages 3118-3127, November.
    20. Kuosmanen, Timo, 2001. "DEA with efficiency classification preserving conditional convexity," European Journal of Operational Research, Elsevier, vol. 132(2), pages 326-342, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:272:y:2019:i:2:p:780-791. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.