IDEAS home Printed from https://ideas.repec.org/a/kap/jproda/v43y2015i1p59-74.html
   My bibliography  Save this article

Nonparametric analysis of technology and productivity under non-convexity: a neighborhood-based approach

Author

Listed:
  • Jean-Paul Chavas
  • Kwansoo Kim

Abstract

This paper investigates the nonparametric analysis of technology under non-convexity. The analysis extends two approaches now commonly used in efficiency and productivity analysis: data envelopment analysis where convexity is imposed; and free disposal hull (FDH) models. We argue that, while the FDH model allows for non-convexity, its representation of non-convexity is too extreme. We propose a new nonparametric model that relies on a neighborhood-based technology assessment which allows for less extreme forms of non-convexity. The distinctive feature of our approach is that it allows for non-convexity to arise in any part of the feasible set. We show how it can be implemented empirically by solving simple linear programming problems. And we illustrate the usefulness of the approach in an empirical application to the analysis of technical and scale efficiency on Korean farms. Copyright Springer Science+Business Media New York 2015

Suggested Citation

  • Jean-Paul Chavas & Kwansoo Kim, 2015. "Nonparametric analysis of technology and productivity under non-convexity: a neighborhood-based approach," Journal of Productivity Analysis, Springer, vol. 43(1), pages 59-74, February.
  • Handle: RePEc:kap:jproda:v:43:y:2015:i:1:p:59-74
    DOI: 10.1007/s11123-014-0383-1
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/s11123-014-0383-1
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/s11123-014-0383-1?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Leleu, Herve, 2006. "A linear programming framework for free disposal hull technologies and cost functions: Primal and dual models," European Journal of Operational Research, Elsevier, vol. 168(2), pages 340-344, January.
    2. Per Agrell & Jørgen Tind, 2001. "A Dual Approach to Nonconvex Frontier Models," Journal of Productivity Analysis, Springer, vol. 16(2), pages 129-147, September.
    3. Jeong, Seok-Oh & Simar, Léopold, 2006. "Linearly interpolated FDH efficiency score for nonconvex frontiers," Journal of Multivariate Analysis, Elsevier, vol. 97(10), pages 2141-2161, November.
    4. Jean-Paul Chavas & Walter Briec, 2012. "On economic efficiency under non-convexity," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 50(3), pages 671-701, August.
    5. Henry Tulkens, 2006. "On FDH Efficiency Analysis: Some Methodological Issues and Applications to Retail Banking, Courts and Urban Transit," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 311-342, Springer.
    6. Kerstens, Kristiaan & Vanden Eeckaut, Philippe, 1999. "Estimating returns to scale using non-parametric deterministic technologies: A new method based on goodness-of-fit," European Journal of Operational Research, Elsevier, vol. 113(1), pages 206-214, February.
    7. Ray,Subhash C., 2012. "Data Envelopment Analysis," Cambridge Books, Cambridge University Press, number 9781107405264.
    8. Chang, Kuo-Ping, 1999. "Measuring efficiency with quasiconcave production frontiers," European Journal of Operational Research, Elsevier, vol. 115(3), pages 497-506, June.
    9. Léopold Simar & Valentin Zelenyuk, 2011. "Stochastic FDH/DEA estimators for frontier analysis," Journal of Productivity Analysis, Springer, vol. 36(1), pages 1-20, August.
    10. Briec, Walter & Liang, Qi Bin, 2011. "On some semilattice structures for production technologies," European Journal of Operational Research, Elsevier, vol. 215(3), pages 740-749, December.
    11. Cook, Wade D. & Seiford, Larry M., 2009. "Data envelopment analysis (DEA) - Thirty years on," European Journal of Operational Research, Elsevier, vol. 192(1), pages 1-17, January.
    12. Dominique Deprins & Léopold Simar & Henry Tulkens, 2006. "Measuring Labor-Efficiency in Post Offices," Springer Books, in: Parkash Chander & Jacques Drèze & C. Knox Lovell & Jack Mintz (ed.), Public goods, environmental externalities and fiscal competition, chapter 0, pages 285-309, Springer.
    13. David C. Wheelock & Paul W. Wilson, 2003. "Robust nonparametric estimation of efficiency and technical change in U.S. commercial banking," Working Papers 2003-037, Federal Reserve Bank of St. Louis.
    14. Jean-Paul Chavas & Kwansoo Kim, 2007. "Measurement and Sources of Economies of Scope: A Primal Approach," Journal of Institutional and Theoretical Economics (JITE), Mohr Siebeck, Tübingen, vol. 163(3), pages 411-427, September.
    15. Kristof Witte & Rui Marques, 2011. "Big and beautiful? On non-parametrically measuring scale economies in non-convex technologies," Journal of Productivity Analysis, Springer, vol. 35(3), pages 213-226, June.
    16. Walter Briec & Kristiaan Kerstens & Philippe Venden Eeckaut, 2004. "Non-convex Technologies and Cost Functions: Definitions, Duality and Nonparametric Tests of Convexity," Journal of Economics, Springer, vol. 81(2), pages 155-192, February.
    17. R. D. Banker & A. Charnes & W. W. Cooper, 1984. "Some Models for Estimating Technical and Scale Inefficiencies in Data Envelopment Analysis," Management Science, INFORMS, vol. 30(9), pages 1078-1092, September.
    18. Chambers, Robert G. & Chung, Yangho & Fare, Rolf, 1996. "Benefit and Distance Functions," Journal of Economic Theory, Elsevier, vol. 70(2), pages 407-419, August.
    19. AGRELL, Per J. & BOGETOFT, Peter & BROCK, Michael & TIND, Jorgen, 2005. "Efficiency evaluation with convex pairs," LIDAM Reprints CORE 1828, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    20. Afriat, Sidney N, 1972. "Efficiency Estimation of Production Function," International Economic Review, Department of Economics, University of Pennsylvania and Osaka University Institute of Social and Economic Research Association, vol. 13(3), pages 568-598, October.
    21. Wheelock, David C. & Wilson, Paul W., 2009. "Robust Nonparametric Quantile Estimation of Efficiency and Productivity Change in U.S. Commercial Banking, 1985–2004," Journal of Business & Economic Statistics, American Statistical Association, vol. 27(3), pages 354-368.
    22. Niels Christian Petersen, 1990. "Data Envelopment Analysis on a Relaxed Set of Assumptions," Management Science, INFORMS, vol. 36(3), pages 305-314, March.
    23. Banker, Rajiv D., 1984. "Estimating most productive scale size using data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 17(1), pages 35-44, July.
    24. Park, B.U. & Simar, L. & Weiner, Ch., 2000. "The Fdh Estimator For Productivity Efficiency Scores," Econometric Theory, Cambridge University Press, vol. 16(6), pages 855-877, December.
    25. Banker, Rajiv D. & Cooper, William W. & Seiford, Lawrence M. & Thrall, Robert M. & Zhu, Joe, 2004. "Returns to scale in different DEA models," European Journal of Operational Research, Elsevier, vol. 154(2), pages 345-362, April.
    26. Peter Bogetoft & Joseph M. Tama & Jørgen Tind, 2000. "Convex Input and Output Projections of Nonconvex Production Possibility Sets," Management Science, INFORMS, vol. 46(6), pages 858-869, June.
    27. Peter Bogetoft, 1996. "DEA on Relaxed Convexity Assumptions," Management Science, INFORMS, vol. 42(3), pages 457-465, March.
    28. H Leleu, 2009. "Mixing DEA and FDH models together," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(12), pages 1730-1737, December.
    29. Varian, Hal R, 1984. "The Nonparametric Approach to Production Analysis," Econometrica, Econometric Society, vol. 52(3), pages 579-597, May.
    30. Rolf Färe & Shawna Grosskopf, 2000. "Theory and Application of Directional Distance Functions," Journal of Productivity Analysis, Springer, vol. 13(2), pages 93-103, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walter Briec & Kristiaan Kerstens & Ignace Van de Woestyne, 2022. "Nonconvexity in Production and Cost Functions: An Exploratory and Selective Review," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 18, pages 721-754, Springer.
    2. Jean-Paul Chavas & Kwansoo Kim, 2016. "On the Microeconomics of Specialization: the Role of Non-Convexity," Atlantic Economic Journal, Springer;International Atlantic Economic Society, vol. 44(3), pages 387-403, September.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Chavas, Jean-Paul & Kim, Kwansoo, 2013. "Nonparametric Analysis of Technology and Productivity under Non-Convexity," 2013 Annual Meeting, August 4-6, 2013, Washington, D.C. 149684, Agricultural and Applied Economics Association.
    2. Keshvari, Abolfazl & Kuosmanen, Timo, 2013. "Stochastic non-convex envelopment of data: Applying isotonic regression to frontier estimation," European Journal of Operational Research, Elsevier, vol. 231(2), pages 481-491.
    3. Zelenyuk, Valentin, 2020. "Aggregation of inputs and outputs prior to Data Envelopment Analysis under big data," European Journal of Operational Research, Elsevier, vol. 282(1), pages 172-187.
    4. Barnabé Walheer, 2020. "Output, input, and undesirable output interconnections in data envelopment analysis: convexity and returns-to-scale," Annals of Operations Research, Springer, vol. 284(1), pages 447-467, January.
    5. Fukuyama, Hirofumi & Shiraz, Rashed Khanjani, 2015. "Cost-effectiveness measures on convex and nonconvex technologies," European Journal of Operational Research, Elsevier, vol. 246(1), pages 307-319.
    6. Valentin Zelenyuk, 2019. "Data Envelopment Analysis and Business Analytics: The Big Data Challenges and Some Solutions," CEPA Working Papers Series WP072019, School of Economics, University of Queensland, Australia.
    7. Kristiaan Kerstens & Ignace Van de Woestyne, 2018. "Enumeration algorithms for FDH directional distance functions under different returns to scale assumptions," Annals of Operations Research, Springer, vol. 271(2), pages 1067-1078, December.
    8. Cherchye, L. & Post, G.T., 2001. "Methodological Advances in Dea," ERIM Report Series Research in Management ERS-2001-53-F&A, Erasmus Research Institute of Management (ERIM), ERIM is the joint research institute of the Rotterdam School of Management, Erasmus University and the Erasmus School of Economics (ESE) at Erasmus University Rotterdam.
    9. Kuosmanen, Timo, 2001. "DEA with efficiency classification preserving conditional convexity," European Journal of Operational Research, Elsevier, vol. 132(2), pages 326-342, July.
    10. Sickles, Robin C. & Song, Wonho & Zelenyuk, Valentin, 2018. "Econometric Analysis of Productivity: Theory and Implementation in R," Working Papers 18-008, Rice University, Department of Economics.
    11. Podinovski, Victor V. & Kuosmanen, Timo, 2011. "Modelling weak disposability in data envelopment analysis under relaxed convexity assumptions," European Journal of Operational Research, Elsevier, vol. 211(3), pages 577-585, June.
    12. Cesaroni, Giovanni & Kerstens, Kristiaan & Van de Woestyne, Ignace, 2017. "Global and local scale characteristics in convex and nonconvex nonparametric technologies: A first empirical exploration," European Journal of Operational Research, Elsevier, vol. 259(2), pages 576-586.
    13. Walter Briec & Kristiaan Kerstens & Ignace Van de Woestyne, 2022. "Nonconvexity in Production and Cost Functions: An Exploratory and Selective Review," Springer Books, in: Subhash C. Ray & Robert G. Chambers & Subal C. Kumbhakar (ed.), Handbook of Production Economics, chapter 18, pages 721-754, Springer.
    14. Léopold Simar & Paul W. Wilson, 2015. "Statistical Approaches for Non-parametric Frontier Models: A Guided Tour," International Statistical Review, International Statistical Institute, vol. 83(1), pages 77-110, April.
    15. Mehdiloozad, Mahmood & Podinovski, Victor V., 2018. "Nonparametric production technologies with weakly disposable inputs," European Journal of Operational Research, Elsevier, vol. 266(1), pages 247-258.
    16. Barnabé Walheer, 2022. "Global Malmquist and cost Malmquist indexes for group comparison," Journal of Productivity Analysis, Springer, vol. 58(1), pages 75-93, August.
    17. Podinovski, V. V., 2005. "Selective convexity in DEA models," European Journal of Operational Research, Elsevier, vol. 161(2), pages 552-563, March.
    18. S Blancard & J-P Boussemart & H Leleu, 2011. "Measuring potential gains from specialization under non-convex technologies," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(10), pages 1871-1880, October.
    19. Subhash C. Ray, 2014. "Data Envelopment Analysis: An Overview," Working papers 2014-33, University of Connecticut, Department of Economics.
    20. Peter Bogetoft & Joseph M. Tama & Jørgen Tind, 2000. "Convex Input and Output Projections of Nonconvex Production Possibility Sets," Management Science, INFORMS, vol. 46(6), pages 858-869, June.

    More about this item

    Keywords

    Technology; Productivity; Nonparametric; Non-convexity; C6; D2; Q12;
    All these keywords.

    JEL classification:

    • C6 - Mathematical and Quantitative Methods - - Mathematical Methods; Programming Models; Mathematical and Simulation Modeling
    • D2 - Microeconomics - - Production and Organizations
    • Q12 - Agricultural and Natural Resource Economics; Environmental and Ecological Economics - - Agriculture - - - Micro Analysis of Farm Firms, Farm Households, and Farm Input Markets

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:kap:jproda:v:43:y:2015:i:1:p:59-74. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.