IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v272y2019i1p207-218.html
   My bibliography  Save this article

An analysis of p-median location problem: Effects of backup service level and demand assignment policy

Author

Listed:
  • Karatas, Mumtaz
  • Yakıcı, Ertan

Abstract

Any solution to facility location problems will consider determining the best suitable locations with respect to certain criteria. Among different types of location problems, involving emergency service system (ESSs) are one of the most widely studied in the literature, and solutions to these problems will mostly aim to minimize the mean response time to demands. In practice, however, a demand may not be served from its nearest facility if that facility is engaged in serving other demands. This makes it a requirement to assign backup services so as to improve response time and service quality. The level of backup service is a key, strategic-level planning factor, and must be taken into consideration carefully. Moreover, in emergency service operations conducted in congested demand regions, demand assignment policy is another important factor that affects the system performance. Models failing to adopt sufficient levels of backup service and realistic demand assignment policies may significantly deteriorate the system performance.

Suggested Citation

  • Karatas, Mumtaz & Yakıcı, Ertan, 2019. "An analysis of p-median location problem: Effects of backup service level and demand assignment policy," European Journal of Operational Research, Elsevier, vol. 272(1), pages 207-218.
  • Handle: RePEc:eee:ejores:v:272:y:2019:i:1:p:207-218
    DOI: 10.1016/j.ejor.2018.06.017
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S037722171830540X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.06.017?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kathleen Hogan & Charles ReVelle, 1986. "Concepts and Applications of Backup Coverage," Management Science, INFORMS, vol. 32(11), pages 1434-1444, November.
    2. Mark S. Daskin & Edmund H. Stern, 1981. "A Hierarchical Objective Set Covering Model for Emergency Medical Service Vehicle Deployment," Transportation Science, INFORMS, vol. 15(2), pages 137-152, May.
    3. Afshartous, David & Guan, Yongtao & Mehrotra, Anuj, 2009. "US Coast Guard air station location with respect to distress calls: A spatial statistics and optimization based methodology," European Journal of Operational Research, Elsevier, vol. 196(3), pages 1086-1096, August.
    4. Hasan Pirkul & David A. Schilling, 1988. "The Siting of Emergency Service Facilities with Workload Capacities and Backup Service," Management Science, INFORMS, vol. 34(7), pages 896-908, July.
    5. A Ingolfsson & E Erkut & S Budge, 2003. "Simulation of single start station for Edmonton EMS," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(7), pages 736-746, July.
    6. Karatas, Mumtaz, 2017. "A multi-objective facility location problem in the presence of variable gradual coverage performance and cooperative cover," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1040-1051.
    7. Razi, Nasuh & Karatas, Mumtaz, 2016. "A multi-objective model for locating search and rescue boats," European Journal of Operational Research, Elsevier, vol. 254(1), pages 279-293.
    8. Zied Jemai & Lina Aboueljinane & Evren Sahin, 2012. "Reducing ambulance response time using simulation: The case of Val-de-Marne department emergency medical service," Post-Print hal-01672421, HAL.
    9. Sunarin Chanta & Maria Mayorga & Laura McLay, 2014. "Improving emergency service in rural areas: a bi-objective covering location model for EMS systems," Annals of Operations Research, Springer, vol. 221(1), pages 133-159, October.
    10. Jerry R. Weaver & Richard L. Church, 1985. "A Median Location Model with Nonclosest Facility Service," Transportation Science, INFORMS, vol. 19(1), pages 58-74, February.
    11. Mumtaz Karatas & Nasuh Razi & Murat M. Gunal, 2017. "An ILP and simulation model to optimize search and rescue helicopter operations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1335-1351, November.
    12. António P. Antunes, 1999. "Location Analysis Helps Manage Solid Waste in Central Portugal," Interfaces, INFORMS, vol. 29(4), pages 32-43, August.
    13. S. L. Hakimi, 1964. "Optimum Locations of Switching Centers and the Absolute Centers and Medians of a Graph," Operations Research, INFORMS, vol. 12(3), pages 450-459, June.
    14. Lina Aboueljinane & Evren Sahin & Zied Jemai & Jean Marty, 2014. "A simulation study to improve the performance of an emergency medical service: Application to the French Val-de-Marne department," Post-Print hal-01672390, HAL.
    15. Kevin Curtin & Karen Hayslett-McCall & Fang Qiu, 2010. "Determining Optimal Police Patrol Areas with Maximal Covering and Backup Covering Location Models," Networks and Spatial Economics, Springer, vol. 10(1), pages 125-145, March.
    16. Amiri, Ali, 1998. "The design of service systems with queueing time cost, workload capacities and backup service," European Journal of Operational Research, Elsevier, vol. 104(1), pages 201-217, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jones, Dylan & Firouzy, Sina & Labib, Ashraf & Argyriou, Athanasios V., 2022. "Multiple criteria model for allocating new medical robotic devices to treatment centres," European Journal of Operational Research, Elsevier, vol. 297(2), pages 652-664.
    2. Jaroslav Janáček & Marek Kvet, 2021. "Efficient incrementing heuristics for generalized p-location problems," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 29(3), pages 989-1000, September.
    3. Jaroslav Janáček & Marek Kvet & Peter Czimmermann, 2023. "Kit of Uniformly Deployed Sets for p -Location Problems," Mathematics, MDPI, vol. 11(11), pages 1-14, May.
    4. Mateo Carlos Galindo-Pérez & Manuel Suárez & Ana Rosa Rosales-Tapia & José Sifuentes-Osornio & Ofelia Angulo-Guerrero & Héctor Benítez-Pérez & Guillermo de Anda-Jauregui & Juan Luis Díaz-de-León-Santi, 2022. "Territorial Strategy of Medical Units for Addressing the First Wave of the COVID-19 Pandemic in the Metropolitan Area of Mexico City: Analysis of Mobility, Accessibility and Marginalization," IJERPH, MDPI, vol. 19(2), pages 1-23, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Amin Akbari & Ronald Pelot & H. A. Eiselt, 2018. "A modular capacitated multi-objective model for locating maritime search and rescue vessels," Annals of Operations Research, Springer, vol. 267(1), pages 3-28, August.
    2. P. Daniel Wright & Matthew J. Liberatore & Robert L. Nydick, 2006. "A Survey of Operations Research Models and Applications in Homeland Security," Interfaces, INFORMS, vol. 36(6), pages 514-529, December.
    3. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    4. Mumtaz Karatas & Nasuh Razi & Murat M. Gunal, 2017. "An ILP and simulation model to optimize search and rescue helicopter operations," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(11), pages 1335-1351, November.
    5. Boffey, Brian & Galvao, Roberto & Espejo, Luis, 2007. "A review of congestion models in the location of facilities with immobile servers," European Journal of Operational Research, Elsevier, vol. 178(3), pages 643-662, May.
    6. Shariat-Mohaymany, Afshin & Babaei, Mohsen & Moadi, Saeed & Amiripour, Sayyed Mahdi, 2012. "Linear upper-bound unavailability set covering models for locating ambulances: Application to Tehran rural roads," European Journal of Operational Research, Elsevier, vol. 221(1), pages 263-272.
    7. Mozhu Wang & Jianming Yao, 2023. "A reliable location design of unmanned vending machines based on customer satisfaction," Electronic Commerce Research, Springer, vol. 23(1), pages 541-575, March.
    8. Kerim Dogan & Mumtaz Karatas & Ertan Yakici, 2020. "A model for locating preventive health care facilities," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 28(3), pages 1091-1121, September.
    9. Masashi Miyagawa, 2020. "Optimal number and length of point-like and line-like facilities of grid and random patterns," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 213-230, April.
    10. Kevin Curtin & Karen Hayslett-McCall & Fang Qiu, 2010. "Determining Optimal Police Patrol Areas with Maximal Covering and Backup Covering Location Models," Networks and Spatial Economics, Springer, vol. 10(1), pages 125-145, March.
    11. Ahmadi-Javid, Amir & Hoseinpour, Pooya, 2019. "Service system design for managing interruption risks: A backup-service risk-mitigation strategy," European Journal of Operational Research, Elsevier, vol. 274(2), pages 417-431.
    12. Sunarin Chanta & Maria Mayorga & Laura McLay, 2014. "Improving emergency service in rural areas: a bi-objective covering location model for EMS systems," Annals of Operations Research, Springer, vol. 221(1), pages 133-159, October.
    13. Karatas, Mumtaz, 2021. "A dynamic multi-objective location-allocation model for search and rescue assets," European Journal of Operational Research, Elsevier, vol. 288(2), pages 620-633.
    14. Bélanger, V. & Ruiz, A. & Soriano, P., 2019. "Recent optimization models and trends in location, relocation, and dispatching of emergency medical vehicles," European Journal of Operational Research, Elsevier, vol. 272(1), pages 1-23.
    15. Jianfeng Lu & Qiang Yang, 2022. "Location Optimization of Emergency Station for Dangerous Goods Accidents Considering Risk," Sustainability, MDPI, vol. 14(10), pages 1-11, May.
    16. Dirk Degel & Lara Wiesche & Sebastian Rachuba & Brigitte Werners, 2015. "Time-dependent ambulance allocation considering data-driven empirically required coverage," Health Care Management Science, Springer, vol. 18(4), pages 444-458, December.
    17. Fetter, Gary & Rakes, Terry, 2012. "Incorporating recycling into post-disaster debris disposal," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 14-22.
    18. Wang, Wei & Wu, Shining & Wang, Shuaian & Zhen, Lu & Qu, Xiaobo, 2021. "Emergency facility location problems in logistics: Status and perspectives," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 154(C).
    19. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    20. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:272:y:2019:i:1:p:207-218. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.