IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v257y2017i1p197-208.html
   My bibliography  Save this article

The mathematical equivalence of the “spanning tree” and row geometric mean preference vectors and its implications for preference analysis

Author

Listed:
  • Lundy, Michele
  • Siraj, Sajid
  • Greco, Salvatore

Abstract

Pairwise comparison is a widely used approach to elicit comparative judgements from a decision maker (DM), and there are a number of methods that can be used to then subsequently derive a consistent preference vector from the DM’s judgements. While the most widely used method is the eigenvector method, the row geometric mean approach has gained popularity due to its mathematical properties and its ease of implementation. In this paper, we discuss a spanning tree method and prove the mathematical equivalence of its preference vector to that of the row geometric mean approach. This is an important finding due to the fact that it identifies an approach for generating a preference vector which has the mathematical properties of the row geometric mean preference vector, and yet, in its entirety, the spanning tree method has more to offer than the row geometric mean method, in that, it is inherently applicable to incomplete sets of pairwise comparison judgements, and also facilitates the use of statistical and visual techniques to gain insights into inconsistency in the DM’s judgements.

Suggested Citation

  • Lundy, Michele & Siraj, Sajid & Greco, Salvatore, 2017. "The mathematical equivalence of the “spanning tree” and row geometric mean preference vectors and its implications for preference analysis," European Journal of Operational Research, Elsevier, vol. 257(1), pages 197-208.
  • Handle: RePEc:eee:ejores:v:257:y:2017:i:1:p:197-208
    DOI: 10.1016/j.ejor.2016.07.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221716305975
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2016.07.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Aguaron, Juan & Moreno-Jimenez, Jose Maria, 2003. "The geometric consistency index: Approximated thresholds," European Journal of Operational Research, Elsevier, vol. 147(1), pages 137-145, May.
    2. Siraj, Sajid & Mikhailov, Ludmil & Keane, John A., 2015. "Contribution of individual judgments toward inconsistency in pairwise comparisons," European Journal of Operational Research, Elsevier, vol. 242(2), pages 557-567.
    3. Matteo Brunelli & Michele Fedrizzi, 2015. "Axiomatic properties of inconsistency indices for pairwise comparisons," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(1), pages 1-15, January.
    4. Fedrizzi, Michele & Giove, Silvio, 2007. "Incomplete pairwise comparison and consistency optimization," European Journal of Operational Research, Elsevier, vol. 183(1), pages 303-313, November.
    5. Matteo Brunelli & Luisa Canal & Michele Fedrizzi, 2013. "Inconsistency indices for pairwise comparison matrices: a numerical study," Annals of Operations Research, Springer, vol. 211(1), pages 493-509, December.
    6. Saaty, Thomas L. & Rogers, Paul C., 1976. "Higher education in the united states (1985-2000) : Scenario construction using a hierarchical framework with eigenvector weighting," Socio-Economic Planning Sciences, Elsevier, vol. 10(6), pages 251-263.
    7. Golany, B. & Kress, M., 1993. "A multicriteria evaluation of methods for obtaining weights from ratio-scale matrices," European Journal of Operational Research, Elsevier, vol. 69(2), pages 210-220, September.
    8. Lin, Chang-Chun, 2007. "A revised framework for deriving preference values from pairwise comparison matrices," European Journal of Operational Research, Elsevier, vol. 176(2), pages 1145-1150, January.
    9. Tomashevskii, I.L., 2015. "Eigenvector ranking method as a measuring tool: Formulas for errors," European Journal of Operational Research, Elsevier, vol. 240(3), pages 774-780.
    10. Kou, Gang & Lin, Changsheng, 2014. "A cosine maximization method for the priority vector derivation in AHP," European Journal of Operational Research, Elsevier, vol. 235(1), pages 225-232.
    11. Hartvigsen, David, 2005. "Representing the strengths and directions of pairwise comparisons," European Journal of Operational Research, Elsevier, vol. 163(2), pages 357-369, June.
    12. Bana e Costa, Carlos A. & Vansnick, Jean-Claude, 2008. "A critical analysis of the eigenvalue method used to derive priorities in AHP," European Journal of Operational Research, Elsevier, vol. 187(3), pages 1422-1428, June.
    13. Siraj, S. & Mikhailov, L. & Keane, J.A., 2012. "Preference elicitation from inconsistent judgments using multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 220(2), pages 461-471.
    14. L Mikhailov, 2000. "A fuzzy programming method for deriving priorities in the analytic hierarchy process," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 51(3), pages 341-349, March.
    15. Cook, Wade D. & Kress, Moshe, 1988. "Deriving weights from pairwise comparison ratio matrices: An axiomatic approach," European Journal of Operational Research, Elsevier, vol. 37(3), pages 355-362, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bice Cavallo, 2019. "Coherent weights for pairwise comparison matrices and a mixed-integer linear programming problem," Journal of Global Optimization, Springer, vol. 75(1), pages 143-161, September.
    2. Aguarón, Juan & Escobar, María Teresa & Moreno-Jiménez, José María, 2021. "Reducing inconsistency measured by the geometric consistency index in the analytic hierarchy process," European Journal of Operational Research, Elsevier, vol. 288(2), pages 576-583.
    3. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    4. Csató, László & Petróczy, Dóra Gréta, 2021. "On the monotonicity of the eigenvector method," European Journal of Operational Research, Elsevier, vol. 292(1), pages 230-237.
    5. D'ora Gr'eta Petr'oczy & L'aszl'o Csat'o, 2019. "Revenue allocation in Formula One: a pairwise comparison approach," Papers 1909.12931, arXiv.org, revised Dec 2020.
    6. Bozóki, Sándor & Fülöp, János, 2018. "Efficient weight vectors from pairwise comparison matrices," European Journal of Operational Research, Elsevier, vol. 264(2), pages 419-427.
    7. L'aszl'o Csat'o & Csaba T'oth, 2018. "University rankings from the revealed preferences of the applicants," Papers 1810.04087, arXiv.org, revised Feb 2020.
    8. Salvatore Greco & Sajid Siraj & Michele Lundy, 2021. "Supporting decisions by unleashing multiple mindsets using pairwise comparisons method," Papers 2107.01731, arXiv.org.
    9. Csató, László & Tóth, Csaba, 2020. "University rankings from the revealed preferences of the applicants," European Journal of Operational Research, Elsevier, vol. 286(1), pages 309-320.
    10. Hiroyuki Goto & Shaohua Wang, 2022. "Polyad inconsistency measure for pairwise comparisons matrices: max-plus algebraic approach," Operational Research, Springer, vol. 22(1), pages 401-422, March.
    11. Csató, László, 2019. "A characterization of the Logarithmic Least Squares Method," European Journal of Operational Research, Elsevier, vol. 276(1), pages 212-216.
    12. Bice Cavallo & Livia D’Apuzzo, 2020. "Relations between coherence conditions and row orders in pairwise comparison matrices," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 637-656, December.
    13. László Csató, 2018. "Characterization of the Row Geometric Mean Ranking with a Group Consensus Axiom," Group Decision and Negotiation, Springer, vol. 27(6), pages 1011-1027, December.
    14. Zsombor Szádoczki & Sándor Bozóki & Patrik Juhász & Sergii V. Kadenko & Vitaliy Tsyganok, 2023. "Incomplete pairwise comparison matrices based on graphs with average degree approximately 3," Annals of Operations Research, Springer, vol. 326(2), pages 783-807, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiří Mazurek, 2018. "Some notes on the properties of inconsistency indices in pairwise comparisons," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 28(1), pages 27-42.
    2. László Csató, 2019. "Axiomatizations of inconsistency indices for triads," Annals of Operations Research, Springer, vol. 280(1), pages 99-110, September.
    3. Li, Kevin W. & Wang, Zhou-Jing & Tong, Xiayu, 2016. "Acceptability analysis and priority weight elicitation for interval multiplicative comparison matrices," European Journal of Operational Research, Elsevier, vol. 250(2), pages 628-638.
    4. Liu, Fang & Zou, Shu-Cai & Li, Qing, 2020. "Deriving priorities from pairwise comparison matrices with a novel consistency index," Applied Mathematics and Computation, Elsevier, vol. 374(C).
    5. Siraj, S. & Mikhailov, L. & Keane, J.A., 2012. "Preference elicitation from inconsistent judgments using multi-objective optimization," European Journal of Operational Research, Elsevier, vol. 220(2), pages 461-471.
    6. Matteo Brunelli, 2017. "Studying a set of properties of inconsistency indices for pairwise comparisons," Annals of Operations Research, Springer, vol. 248(1), pages 143-161, January.
    7. József Temesi, 2019. "An interactive approach to determine the elements of a pairwise comparison matrix," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 533-549, June.
    8. Sangeeta Pant & Anuj Kumar & Mangey Ram & Yury Klochkov & Hitesh Kumar Sharma, 2022. "Consistency Indices in Analytic Hierarchy Process: A Review," Mathematics, MDPI, vol. 10(8), pages 1-15, April.
    9. Paul Thaddeus Kazibudzki, 2016. "An examination of performance relations among selected consistency measures for simulated pairwise judgments," Annals of Operations Research, Springer, vol. 244(2), pages 525-544, September.
    10. Jiří Mazurek & Konrad Kulakowski, 2020. "Information gap in value propositions of business models of language schools," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 30(2), pages 77-89.
    11. Brunelli, Matteo & Fedrizzi, Michele, 2024. "Inconsistency indices for pairwise comparisons and the Pareto dominance principle," European Journal of Operational Research, Elsevier, vol. 312(1), pages 273-282.
    12. Marcin Anholcer & János Fülöp, 2019. "Deriving priorities from inconsistent PCM using network algorithms," Annals of Operations Research, Springer, vol. 274(1), pages 57-74, March.
    13. Vladimír Bureš & Jiří Cabal & Pavel Čech & Karel Mls & Daniela Ponce, 2020. "The Influence of Criteria Selection Method on Consistency of Pairwise Comparison," Mathematics, MDPI, vol. 8(12), pages 1-13, December.
    14. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    15. Matteo Brunelli & Michele Fedrizzi, 2019. "A general formulation for some inconsistency indices of pairwise comparisons," Annals of Operations Research, Springer, vol. 274(1), pages 155-169, March.
    16. József Temesi, 2011. "Pairwise comparison matrices and the error-free property of the decision maker," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 19(2), pages 239-249, June.
    17. Faramondi, Luca & Oliva, Gabriele & Setola, Roberto & Bozóki, Sándor, 2023. "Robustness to rank reversal in pairwise comparison matrices based on uncertainty bounds," European Journal of Operational Research, Elsevier, vol. 304(2), pages 676-688.
    18. Tomashevskii, I.L., 2015. "Eigenvector ranking method as a measuring tool: Formulas for errors," European Journal of Operational Research, Elsevier, vol. 240(3), pages 774-780.
    19. Hovanov, Nikolai V. & Kolari, James W. & Sokolov, Mikhail V., 2008. "Deriving weights from general pairwise comparison matrices," Mathematical Social Sciences, Elsevier, vol. 55(2), pages 205-220, March.
    20. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez & Alberto Turón, 2020. "The Triads Geometric Consistency Index in AHP-Pairwise Comparison Matrices," Mathematics, MDPI, vol. 8(6), pages 1-17, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:257:y:2017:i:1:p:197-208. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.