IDEAS home Printed from https://ideas.repec.org/a/spr/grdene/v27y2018i6d10.1007_s10726-018-9589-3.html
   My bibliography  Save this article

Characterization of the Row Geometric Mean Ranking with a Group Consensus Axiom

Author

Listed:
  • László Csató

    (Institute for Computer Science and Control, Hungarian Academy of Sciences (MTA SZTAKI)
    Corvinus University of Budapest (BCE))

Abstract

An axiomatic approach is applied to the problem of extracting a ranking of the alternatives from a pairwise comparison ratio matrix. The ordering induced by row geometric mean method is proved to be uniquely determined by three independent axioms, anonymity (independence of the labelling of alternatives), responsiveness (a kind of monotonicity property) and aggregation invariance, which requires the preservation of group consensus, that is, the pairwise ranking between two alternatives should remain unchanged if unanimous individual preferences are combined by geometric mean.

Suggested Citation

  • László Csató, 2018. "Characterization of the Row Geometric Mean Ranking with a Group Consensus Axiom," Group Decision and Negotiation, Springer, vol. 27(6), pages 1011-1027, December.
  • Handle: RePEc:spr:grdene:v:27:y:2018:i:6:d:10.1007_s10726-018-9589-3
    DOI: 10.1007/s10726-018-9589-3
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10726-018-9589-3
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10726-018-9589-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Matteo Brunelli & Michele Fedrizzi, 2015. "Axiomatic properties of inconsistency indices for pairwise comparisons," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 66(1), pages 1-15, January.
    2. László Csató, 2015. "A graph interpretation of the least squares ranking method," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 44(1), pages 51-69, January.
    3. Pavel Yu. Chebotarev & Elena Shamis, 1998. "Characterizations of scoring methodsfor preference aggregation," Annals of Operations Research, Springer, vol. 80(0), pages 299-332, January.
    4. Theo Dijkstra, 2013. "On the extraction of weights from pairwise comparison matrices," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 21(1), pages 103-123, January.
    5. Julio González-Díaz & Ruud Hendrickx & Edwin Lohmann, 2014. "Paired comparisons analysis: an axiomatic approach to ranking methods," Social Choice and Welfare, Springer;The Society for Social Choice and Welfare, vol. 42(1), pages 139-169, January.
    6. Young, H. P., 1974. "An axiomatization of Borda's rule," Journal of Economic Theory, Elsevier, vol. 9(1), pages 43-52, September.
    7. van den Brink, René & Gilles, Robert P., 2009. "The outflow ranking method for weighted directed graphs," European Journal of Operational Research, Elsevier, vol. 193(2), pages 484-491, March.
    8. Kenneth J. Arrow, 1950. "A Difficulty in the Concept of Social Welfare," Journal of Political Economy, University of Chicago Press, vol. 58, pages 328-328.
    9. George Rabinowitz, 1976. "Some Comments on Measuring World Influence," Conflict Management and Peace Science, Peace Science Society (International), vol. 2(1), pages 49-55, February.
    10. Cook, Wade D. & Kress, Moshe, 1988. "Deriving weights from pairwise comparison ratio matrices: An axiomatic approach," European Journal of Operational Research, Elsevier, vol. 37(3), pages 355-362, December.
    11. Shmuel Nitzan & Ariel Rubinstein, 1981. "A further characterization of Borda ranking method," Public Choice, Springer, vol. 36(1), pages 153-158, January.
    12. Fichtner, John, 1986. "On deriving priority vectors from matrices of pairwise comparisons," Socio-Economic Planning Sciences, Elsevier, vol. 20(6), pages 341-345.
    13. Lundy, Michele & Siraj, Sajid & Greco, Salvatore, 2017. "The mathematical equivalence of the “spanning tree” and row geometric mean preference vectors and its implications for preference analysis," European Journal of Operational Research, Elsevier, vol. 257(1), pages 197-208.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bice Cavallo, 2019. "Coherent weights for pairwise comparison matrices and a mixed-integer linear programming problem," Journal of Global Optimization, Springer, vol. 75(1), pages 143-161, September.
    2. Fernandes, Rosário & Furtado, Susana, 2022. "Efficiency of the principal eigenvector of some triple perturbed consistent matrices," European Journal of Operational Research, Elsevier, vol. 298(3), pages 1007-1015.
    3. Csató, László, 2019. "A characterization of the Logarithmic Least Squares Method," European Journal of Operational Research, Elsevier, vol. 276(1), pages 212-216.
    4. Csató, László & Petróczy, Dóra Gréta, 2021. "On the monotonicity of the eigenvector method," European Journal of Operational Research, Elsevier, vol. 292(1), pages 230-237.
    5. Juan Aguarón & María Teresa Escobar & José María Moreno-Jiménez & Alberto Turón, 2020. "The Triads Geometric Consistency Index in AHP-Pairwise Comparison Matrices," Mathematics, MDPI, vol. 8(6), pages 1-17, June.
    6. Csató, László & Tóth, Csaba, 2020. "University rankings from the revealed preferences of the applicants," European Journal of Operational Research, Elsevier, vol. 286(1), pages 309-320.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Csató, László, 2019. "A characterization of the Logarithmic Least Squares Method," European Journal of Operational Research, Elsevier, vol. 276(1), pages 212-216.
    2. László Csató, 2019. "An impossibility theorem for paired comparisons," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 27(2), pages 497-514, June.
    3. Csató, László & Petróczy, Dóra Gréta, 2021. "On the monotonicity of the eigenvector method," European Journal of Operational Research, Elsevier, vol. 292(1), pages 230-237.
    4. Bice Cavallo, 2019. "Coherent weights for pairwise comparison matrices and a mixed-integer linear programming problem," Journal of Global Optimization, Springer, vol. 75(1), pages 143-161, September.
    5. Csató, László & Tóth, Csaba, 2020. "University rankings from the revealed preferences of the applicants," European Journal of Operational Research, Elsevier, vol. 286(1), pages 309-320.
    6. L'aszl'o Csat'o & Csaba T'oth, 2018. "University rankings from the revealed preferences of the applicants," Papers 1810.04087, arXiv.org, revised Feb 2020.
    7. Csató, László, 2017. "European qualifiers to the 2018 FIFA World Cup can be manipulated," MPRA Paper 82652, University Library of Munich, Germany.
    8. D'ora Gr'eta Petr'oczy & L'aszl'o Csat'o, 2019. "Revenue allocation in Formula One: a pairwise comparison approach," Papers 1909.12931, arXiv.org, revised Dec 2020.
    9. Eyal Baharad & Leif Danziger, 2018. "Voting in Hiring Committees: Which "Almost" Rule is Optimal?," CESifo Working Paper Series 6851, CESifo.
    10. Baharad, Eyal & Danziger, Leif, 2018. "Voting in Hiring Committees: Which "Almost" Rule Is Optimal?," IZA Discussion Papers 11287, Institute of Labor Economics (IZA).
    11. Michele Fedrizzi & Nino Civolani & Andrew Critch, 2020. "Inconsistency evaluation in pairwise comparison using norm-based distances," Decisions in Economics and Finance, Springer;Associazione per la Matematica, vol. 43(2), pages 657-672, December.
    12. L'aszl'o Csat'o, 2019. "Journal ranking should depend on the level of aggregation," Papers 1904.06300, arXiv.org, revised Sep 2019.
    13. László Csató, 2017. "On the ranking of a Swiss system chess team tournament," Annals of Operations Research, Springer, vol. 254(1), pages 17-36, July.
    14. Eyal Baharad & Leif Danziger, 2018. "Voting in Hiring Committees: Which “Almost” Rule is Optimal?," Group Decision and Negotiation, Springer, vol. 27(1), pages 129-151, February.
    15. Baharad, Eyal & Danziger, Leif, 2018. "Voting in Hiring Committees: Which "Almost" Rule Is Optimal?," GLO Discussion Paper Series 185, Global Labor Organization (GLO).
    16. László Csató, 2019. "Axiomatizations of inconsistency indices for triads," Annals of Operations Research, Springer, vol. 280(1), pages 99-110, September.
    17. Matteo Brunelli, 2017. "Studying a set of properties of inconsistency indices for pairwise comparisons," Annals of Operations Research, Springer, vol. 248(1), pages 143-161, January.
    18. Liang, Fuqi & Brunelli, Matteo & Rezaei, Jafar, 2020. "Consistency issues in the best worst method: Measurements and thresholds," Omega, Elsevier, vol. 96(C).
    19. László Csató, 2023. "A comparative study of scoring systems by simulations," Journal of Sports Economics, , vol. 24(4), pages 526-545, May.
    20. Lundy, Michele & Siraj, Sajid & Greco, Salvatore, 2017. "The mathematical equivalence of the “spanning tree” and row geometric mean preference vectors and its implications for preference analysis," European Journal of Operational Research, Elsevier, vol. 257(1), pages 197-208.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:grdene:v:27:y:2018:i:6:d:10.1007_s10726-018-9589-3. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.