IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v250y2016i2p639-651.html
   My bibliography  Save this article

Hidden Markov model for municipal waste generation forecasting under uncertainties

Author

Listed:
  • Jiang, P.
  • Liu, X.

Abstract

Waste generation forecasting is a complex process that is found to be influenced by some latent influencing parameters and their uncertainties, such as economic growth, demography, individual behaviors, activities and events, and management policies. These hidden features play an important role in forecasting the fluctuations of waste generation. We therefore focus on revealing the trend of waste generation in megacities which face significant influences of social and economic changes to achieve urban sustainable development. To dynamically trace fluctuations caused by these uncertainties, we propose a probability model-driven statistical learning approach which hybridizes a wavelet de-noising, a Gaussian mixture model, and a hidden Markov model. First, to gain the actual underlying trend, wavelet de-noising is used to eliminate the noise of data. Next, the Expectation–Maximization and the Viterbi algorithms are employed for learning parameters and discerning the most probable sequence of hidden states, respectively. Subsequently, the state transition matrix is updated by fractional predictable changes of influencing parameters to perform non-periodic fluctuation problem forecasting, and the forward algorithm is utilized to search the most similar data pattern for the current pattern from historical data in order to forecast the future trend of the periodic fluctuation problem. Finally, we apply the approaches into two kinds of case studies that test both a small dataset and a large dataset. How uncertainty factors influence forecasted results is analyzed in the subsection of results and discussion. The computational results demonstrate that the proposed approaches are effective in solving the municipal waste generation forecasting problem.

Suggested Citation

  • Jiang, P. & Liu, X., 2016. "Hidden Markov model for municipal waste generation forecasting under uncertainties," European Journal of Operational Research, Elsevier, vol. 250(2), pages 639-651.
  • Handle: RePEc:eee:ejores:v:250:y:2016:i:2:p:639-651
    DOI: 10.1016/j.ejor.2015.09.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715008425
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.09.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Karavezyris, Vassilios & Timpe, Klaus-Peter & Marzi, Ruth, 2002. "Application of system dynamics and fuzzy logic to forecasting of municipal solid waste," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 60(3), pages 149-158.
    2. de Souza e Silva, Edmundo G. & Legey, Luiz F.L. & de Souza e Silva, Edmundo A., 2010. "Forecasting oil price trends using wavelets and hidden Markov models," Energy Economics, Elsevier, vol. 32(6), pages 1507-1519, November.
    3. Kim, Michael Jong & Jiang, Rui & Makis, Viliam & Lee, Chi-Guhn, 2011. "Optimal Bayesian fault prediction scheme for a partially observable system subject to random failure," European Journal of Operational Research, Elsevier, vol. 214(2), pages 331-339, October.
    4. Guerry, Marie-Anne, 2011. "Hidden heterogeneity in manpower systems: A Markov-switching model approach," European Journal of Operational Research, Elsevier, vol. 210(1), pages 106-113, April.
    5. Xiaojun Guo & Sifeng Liu & Lifeng Wu & Lingling Tang, 2014. "Application of a Novel Grey Self-Memory Coupling Model to Forecast the Incidence Rates of Two Notifiable Diseases in China: Dysentery and Gonorrhea," PLOS ONE, Public Library of Science, vol. 9(12), pages 1-17, December.
    6. Zhou, Zhi-Jie & Hu, Chang-Hua & Xu, Dong-Ling & Chen, Mao-Yin & Zhou, Dong-Hua, 2010. "A model for real-time failure prognosis based on hidden Markov model and belief rule base," European Journal of Operational Research, Elsevier, vol. 207(1), pages 269-283, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yinsheng Yang & Gang Yuan & Jiaxiang Cai & Silin Wei, 2021. "Forecasting of Disassembly Waste Generation under Uncertainties Using Digital Twinning-Based Hidden Markov Model," Sustainability, MDPI, vol. 13(10), pages 1-15, May.
    2. An Zhou & Shenhan Wu & Zhujie Chu & Wei-Chiao Huang, 2019. "Regional Differences in Municipal Solid Waste Collection Quantities in China," Sustainability, MDPI, vol. 11(15), pages 1-12, July.
    3. Ali Taghi-Molla & Masoud Rabbani & Mohammad Hosein Karimi Gavareshki & Ehsan Dehghani, 2020. "Safety improvement in a gas refinery based on resilience engineering and macro-ergonomics indicators: a Bayesian network–artificial neural network approach," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 11(3), pages 641-654, June.
    4. Gambella, Claudio & Maggioni, Francesca & Vigo, Daniele, 2019. "A stochastic programming model for a tactical solid waste management problem," European Journal of Operational Research, Elsevier, vol. 273(2), pages 684-694.
    5. Schücking, Maximilian & Jochem, Patrick, 2021. "Two-stage stochastic program optimizing the cost of electric vehicles in commercial fleets," Applied Energy, Elsevier, vol. 293(C).
    6. Ivan Potravnyy & Andrey Novoselov & IRINA NOVOSELOVA, 2017. "Optimizing the Use of Resources of Technogenic Deposits Taking into Account Uncertainties," Economy of region, Centre for Economic Security, Institute of Economics of Ural Branch of Russian Academy of Sciences, vol. 1(4), pages 1280-1290.
    7. Naumzik, Christof & Feuerriegel, Stefan & Nielsen, Anne Molgaard, 2023. "Data-driven dynamic treatment planning for chronic diseases," European Journal of Operational Research, Elsevier, vol. 305(2), pages 853-867.
    8. Radovan Šomplák & Veronika Smejkalová & Martin Rosecký & Lenka Szásziová & Vlastimír Nevrlý & Dušan Hrabec & Martin Pavlas, 2023. "Comprehensive Review on Waste Generation Modeling," Sustainability, MDPI, vol. 15(4), pages 1-29, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. De Angelis, Luca & Dias, José G., 2014. "Mining categorical sequences from data using a hybrid clustering method," European Journal of Operational Research, Elsevier, vol. 234(3), pages 720-730.
    2. Schücking, Maximilian & Jochem, Patrick, 2021. "Two-stage stochastic program optimizing the cost of electric vehicles in commercial fleets," Applied Energy, Elsevier, vol. 293(C).
    3. Akram Khaleghei & Viliam Makis, 2015. "Model parameter estimation and residual life prediction for a partially observable failing system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(3), pages 190-205, April.
    4. Dias, José G. & Vermunt, Jeroen K. & Ramos, Sofia, 2015. "Clustering financial time series: New insights from an extended hidden Markov model," European Journal of Operational Research, Elsevier, vol. 243(3), pages 852-864.
    5. Onggo, S. & Pidd, M. & Soopramanien, D. & Worthington, D.J., 2012. "Behavioural modelling of career progression in the European Commission," European Journal of Operational Research, Elsevier, vol. 222(3), pages 632-641.
    6. Naser, Hanan, 2016. "Estimating and forecasting the real prices of crude oil: A data rich model using a dynamic model averaging (DMA) approach," Energy Economics, Elsevier, vol. 56(C), pages 75-87.
    7. Mingming, Tang & Jinliang, Zhang, 2012. "A multiple adaptive wavelet recurrent neural network model to analyze crude oil prices," Journal of Economics and Business, Elsevier, vol. 64(4), pages 275-286.
    8. Jørgen Vitting Andersen & Roy Cerqueti & Giulia Rotundo, 2017. "Rational expectations and stochastic systems," Documents de travail du Centre d'Economie de la Sorbonne 17060, Université Panthéon-Sorbonne (Paris 1), Centre d'Economie de la Sorbonne, revised Oct 2019.
    9. Lin, Ling & Jiang, Yong & Xiao, Helu & Zhou, Zhongbao, 2020. "Crude oil price forecasting based on a novel hybrid long memory GARCH-M and wavelet analysis model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 543(C).
    10. Khatereh Ghasvarian Jahromi & Davood Gharavian & Hamid Reza Mahdiani, 2023. "Wind power prediction based on wind speed forecast using hidden Markov model," Journal of Forecasting, John Wiley & Sons, Ltd., vol. 42(1), pages 101-123, January.
    11. Duan, Wenqi & Khurshid, Adnan & Nazir, Naila & Khan, Khalid & Calin, Adrian Cantemir, 2022. "From gray to green: Energy crises and the role of CPEC," Renewable Energy, Elsevier, vol. 190(C), pages 188-207.
    12. Lang, Korbinian & Auer, Benjamin R., 2020. "The economic and financial properties of crude oil: A review," The North American Journal of Economics and Finance, Elsevier, vol. 52(C).
    13. Wang Xiao-jun & Zhang Jian-yun & Wang Jian-hua & He Rui-min & Amgad ElMahdi & Liu Jin-hua & Wang Xin-gong & David King & Shamsuddin Shahid, 2014. "Climate change and water resources management in Tuwei river basin of Northwest China," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 19(1), pages 107-120, January.
    14. Kampitsis, Dimitris & Panagiotidou, Sofia, 2022. "A Bayesian condition-based maintenance and monitoring policy with variable sampling intervals," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    15. Drachal, Krzysztof, 2016. "Forecasting spot oil price in a dynamic model averaging framework — Have the determinants changed over time?," Energy Economics, Elsevier, vol. 60(C), pages 35-46.
    16. Zhao, S. & Liu, X. & Zhuo, Y., 2017. "Hybrid Hidden Markov Models for resilience metrics in a dynamic infrastructure system," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 84-97.
    17. Zied Ftiti & Kais Tissaoui & Sahbi Boubaker, 2022. "On the relationship between oil and gas markets: a new forecasting framework based on a machine learning approach," Annals of Operations Research, Springer, vol. 313(2), pages 915-943, June.
    18. Jammazi, Rania & Aloui, Chaker, 2012. "Crude oil price forecasting: Experimental evidence from wavelet decomposition and neural network modeling," Energy Economics, Elsevier, vol. 34(3), pages 828-841.
    19. Florian Kapmeier & Paulo Gonçalves, 2018. "Wasted paradise? Policies for Small Island States to manage tourism‐driven growth while controlling waste generation: the case of the Maldives," System Dynamics Review, System Dynamics Society, vol. 34(1-2), pages 172-221, January.
    20. Georgiou, Andreas C. & Thanassoulis, Emmanuel & Papadopoulou, Alexandra, 2022. "Using data envelopment analysis in markovian decision making," European Journal of Operational Research, Elsevier, vol. 298(1), pages 276-292.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:250:y:2016:i:2:p:639-651. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.