IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v244y2015i2p392-403.html
   My bibliography  Save this article

The data transfer problem in a system of systems

Author

Listed:
  • Bocquillon, Ronan
  • Jouglet, Antoine
  • Carlier, Jacques

Abstract

Systems of systems are collections of independent systems which interact and share information to provide services. To communicate, systems can opportunistically make use of contacts that occur when two entities are close enough to each other. In this paper, it is assumed that reliable predictions can be made about the sequence of such contacts for each system. An information item (a datum) is split into several datum units which are to be delivered to recipient systems. During a contact between two systems, a sending system can transfer one stored datum unit to a receiving system. Source systems initially store some of the datum units. The data transfer problem consists in searching for a valid transfer plan, i.e. a transfer plan allowing the datum units to be transmitted from their source systems to the recipient systems. The dissemination problem consists in searching a valid transfer plan which minimizes the dissemination length, i.e. the number of contacts which are necessary to deliver all the datum units to the recipient nodes. To our knowledge, there is no previous work attempting to determine the theoretical complexity of these problems. The aim of this paper is to determine the frontier between easy and hard problems. We show that the problems are strongly NP-Hard when the number of recipients is equal to 2 or more (while the number of datum units is unbounded) or the number of datum units is equal to 2 or more (while the number of recipients is unbounded). We also show that these problems are polynomially solvable when the number of datum units or the number of recipient nodes is equal to 1, or when these parameters are all upper bounded by given positive numbers. The complexity of two related problems is also studied. It is shown that knowing whether there exist k mutually arc-disjoint branchings in an evolving graph and k arc-disjoint Steiner trees in a directed graph without circuit are strongly NP-Complete.

Suggested Citation

  • Bocquillon, Ronan & Jouglet, Antoine & Carlier, Jacques, 2015. "The data transfer problem in a system of systems," European Journal of Operational Research, Elsevier, vol. 244(2), pages 392-403.
  • Handle: RePEc:eee:ejores:v:244:y:2015:i:2:p:392-403
    DOI: 10.1016/j.ejor.2015.01.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221715000636
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2015.01.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    2. Costa, Marie-Christine & Letocart, Lucas & Roupin, Frederic, 2005. "Minimal multicut and maximal integer multiflow: A survey," European Journal of Operational Research, Elsevier, vol. 162(1), pages 55-69, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bocquillon, Ronan & Jouglet, Antoine, 2017. "Modeling elements and solving techniques for the data dissemination problem," European Journal of Operational Research, Elsevier, vol. 256(3), pages 713-728.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Reyes, Damián & Erera, Alan L. & Savelsbergh, Martin W.P., 2018. "Complexity of routing problems with release dates and deadlines," European Journal of Operational Research, Elsevier, vol. 266(1), pages 29-34.
    2. Dessouky, Maged M & Hu, Shichun, 2021. "Dynamic Routing for Ride-Sharing," Institute of Transportation Studies, Working Paper Series qt6qq8r7hz, Institute of Transportation Studies, UC Davis.
    3. LIAN, Ying & LUCAS, Flavien & SÖRENSEN, Kenneth, 2022. "On-demand bus routing problem with dynamic stochastic requests and prepositioning," Working Papers 2022004, University of Antwerp, Faculty of Business and Economics.
    4. Marlin W. Ulmer & Alan Erera & Martin Savelsbergh, 2022. "Dynamic service area sizing in urban delivery," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(3), pages 763-793, September.
    5. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    6. Rubio, Francisco & Llopis-Albert, Carlos & Valero, Francisco, 2021. "Multi-objective optimization of costs and energy efficiency associated with autonomous industrial processes for sustainable growth," Technological Forecasting and Social Change, Elsevier, vol. 173(C).
    7. Timothy M. Sweda & Irina S. Dolinskaya & Diego Klabjan, 2017. "Adaptive Routing and Recharging Policies for Electric Vehicles," Transportation Science, INFORMS, vol. 51(4), pages 1326-1348, November.
    8. Cordeau, Jean-François & Dell’Amico, Mauro & Falavigna, Simone & Iori, Manuel, 2015. "A rolling horizon algorithm for auto-carrier transportation," Transportation Research Part B: Methodological, Elsevier, vol. 76(C), pages 68-80.
    9. Stacy A. Voccia & Ann Melissa Campbell & Barrett W. Thomas, 2019. "The Same-Day Delivery Problem for Online Purchases," Service Science, INFORMS, vol. 53(1), pages 167-184, February.
    10. Roberto Tadei & Guido Perboli & Francesca Perfetti, 2017. "The multi-path Traveling Salesman Problem with stochastic travel costs," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(1), pages 3-23, March.
    11. John E. Fontecha & Oscar O. Guaje & Daniel Duque & Raha Akhavan-Tabatabaei & Juan P. Rodríguez & Andrés L. Medaglia, 2020. "Combined maintenance and routing optimization for large-scale sewage cleaning," Annals of Operations Research, Springer, vol. 286(1), pages 441-474, March.
    12. Yuxin Liu & Zihang Qin & Jin Liu, 2023. "An Improved Genetic Algorithm for the Granularity-Based Split Vehicle Routing Problem with Simultaneous Delivery and Pickup," Mathematics, MDPI, vol. 11(15), pages 1-15, July.
    13. Zahra Navidi & Nicole Ronald & Stephan Winter, 2018. "Comparison between ad-hoc demand responsive and conventional transit: a simulation study," Public Transport, Springer, vol. 10(1), pages 147-167, May.
    14. Hyland, Michael & Mahmassani, Hani S., 2020. "Operational benefits and challenges of shared-ride automated mobility-on-demand services," Transportation Research Part A: Policy and Practice, Elsevier, vol. 134(C), pages 251-270.
    15. Martijn Merwe & Melih Ozlen & John W. Hearne & James P. Minas, 2017. "Dynamic rerouting of vehicles during cooperative wildfire response operations," Annals of Operations Research, Springer, vol. 254(1), pages 467-480, July.
    16. Zhang, Jian & Woensel, Tom Van, 2023. "Dynamic vehicle routing with random requests: A literature review," International Journal of Production Economics, Elsevier, vol. 256(C).
    17. Ehmke, Jan Fabian & Campbell, Ann Melissa, 2014. "Customer acceptance mechanisms for home deliveries in metropolitan areas," European Journal of Operational Research, Elsevier, vol. 233(1), pages 193-207.
    18. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    19. Richard Eglese & Sofoclis Zambirinis, 2018. "Disruption management in vehicle routing and scheduling for road freight transport: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 1-17, April.
    20. Lian, Ying & Lucas, Flavien & Sörensen, Kenneth, 2024. "Prepositioning can improve the performance of a dynamic stochastic on-demand public bus system," European Journal of Operational Research, Elsevier, vol. 312(1), pages 338-356.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:244:y:2015:i:2:p:392-403. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.