IDEAS home Printed from https://ideas.repec.org/a/spr/topjnl/v26y2018i1d10.1007_s11750-018-0469-4.html
   My bibliography  Save this article

Disruption management in vehicle routing and scheduling for road freight transport: a review

Author

Listed:
  • Richard Eglese

    (Lancaster University Management School)

  • Sofoclis Zambirinis

    (Lancaster University Management School)

Abstract

Disruption management is an approach to the rescheduling of operations following an unanticipated event occurring that has been applied in a wide range of applications, including airline scheduling and project management. This review focusses on the use of disruption management in vehicle routing and scheduling applied to road freight distribution. The paper discusses the key features of disruption management and examines the relevant objectives and types of disruption that may occur in this context. Different formulations and solution methods are described. A set of relevant papers are summarised and classified according to the type of disruption addressed, the relevant objectives and the solution approach.

Suggested Citation

  • Richard Eglese & Sofoclis Zambirinis, 2018. "Disruption management in vehicle routing and scheduling for road freight transport: a review," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 26(1), pages 1-17, April.
  • Handle: RePEc:spr:topjnl:v:26:y:2018:i:1:d:10.1007_s11750-018-0469-4
    DOI: 10.1007/s11750-018-0469-4
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s11750-018-0469-4
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s11750-018-0469-4?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    2. G. B. Dantzig & J. H. Ramser, 1959. "The Truck Dispatching Problem," Management Science, INFORMS, vol. 6(1), pages 80-91, October.
    3. Richard Freling & Albert P. M. Wagelmans & José M. Pinto Paixão, 2001. "Models and Algorithms for Single-Depot Vehicle Scheduling," Transportation Science, INFORMS, vol. 35(2), pages 165-180, May.
    4. Li, Jing-Quan & Borenstein, Denis & Mirchandani, Pitu B., 2008. "Truck scheduling for solid waste collection in the City of Porto Alegre, Brazil," Omega, Elsevier, vol. 36(6), pages 1133-1149, December.
    5. Andreas T. Ernst & Mark Horn & Mohan Krishnamoorthy & Philip Kilby & Phil Degenhardt & Michael Moran, 2007. "Static and Dynamic Order Scheduling for Recreational Rental Vehicles at Tourism Holdings Limited," Interfaces, INFORMS, vol. 37(4), pages 334-341, August.
    6. R. Baldacci & E. Hadjiconstantinou & A. Mingozzi, 2004. "An Exact Algorithm for the Capacitated Vehicle Routing Problem Based on a Two-Commodity Network Flow Formulation," Operations Research, INFORMS, vol. 52(5), pages 723-738, October.
    7. Alves, Maria Joao & Climaco, Joao, 2007. "A review of interactive methods for multiobjective integer and mixed-integer programming," European Journal of Operational Research, Elsevier, vol. 180(1), pages 99-115, July.
    8. Wang, Xuping & Ruan, Junhu & Shi, Yan, 2012. "A recovery model for combinational disruptions in logistics delivery: Considering the real-world participators," International Journal of Production Economics, Elsevier, vol. 140(1), pages 508-520.
    9. K Mamasis & I Minis & G Dikas, 2013. "Managing vehicle breakdown incidents during urban distribution of a common product," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 64(6), pages 925-937, June.
    10. Qianxin Mu & Richard Eglese, 2013. "Disrupted capacitated vehicle routing problem with order release delay," Annals of Operations Research, Springer, vol. 207(1), pages 201-216, August.
    11. A N Letchford & J Lysgaard & R W Eglese, 2007. "A branch-and-cut algorithm for the capacitated open vehicle routing problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(12), pages 1642-1651, December.
    12. Q Mu & Z Fu & J Lysgaard & R Eglese, 2011. "Disruption management of the vehicle routing problem with vehicle breakdown," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(4), pages 742-749, April.
    13. Marius M. Solomon, 1987. "Algorithms for the Vehicle Routing and Scheduling Problems with Time Window Constraints," Operations Research, INFORMS, vol. 35(2), pages 254-265, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alice Vasconcelos Nobre & Caio Cézar Rodrigues Oliveira & Denilson Ricardo de Lucena Nunes & André Cristiano Silva Melo & Gil Eduardo Guimarães & Rosley Anholon & Vitor William Batista Martins, 2022. "Analysis of Decision Parameters for Route Plans and Their Importance for Sustainability: An Exploratory Study Using the TOPSIS Technique," Logistics, MDPI, vol. 6(2), pages 1-12, May.
    2. Sahar Bsaybes & Alain Quilliot & Annegret K. Wagler, 2019. "Fleet management for autonomous vehicles using flows in time-expanded networks," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 27(2), pages 288-311, July.
    3. Sun, Yanshuo & Kirtonia, Sajeeb & Chen, Zhi-Long, 2021. "A survey of finished vehicle distribution and related problems from an optimization perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    4. Giménez-Palacios, Iván & Parreño, Francisco & Álvarez-Valdés, Ramón & Paquay, Célia & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando, 2022. "First-mile logistics parcel pickup: Vehicle routing with packing constraints under disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    5. Lydia Novoszel & Tina Wakolbinger, 2022. "Meta-analysis of Supply Chain Disruption Research," SN Operations Research Forum, Springer, vol. 3(1), pages 1-25, March.
    6. Jafarian, Ahmad & Asgari, Nasrin & Mohri, Seyed Sina & Fatemi-Sadr, Elham & Farahani, Reza Zanjirani, 2019. "The inventory-routing problem subject to vehicle failure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 254-294.
    7. Margaretha Gansterer & Richard F. Hartl, 2020. "Shared resources in collaborative vehicle routing," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 28(1), pages 1-20, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jafarian, Ahmad & Asgari, Nasrin & Mohri, Seyed Sina & Fatemi-Sadr, Elham & Farahani, Reza Zanjirani, 2019. "The inventory-routing problem subject to vehicle failure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 126(C), pages 254-294.
    2. Briseida Sarasola & Karl Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
    3. Briseida Sarasola & Karl F. Doerner & Verena Schmid & Enrique Alba, 2016. "Variable neighborhood search for the stochastic and dynamic vehicle routing problem," Annals of Operations Research, Springer, vol. 236(2), pages 425-461, January.
    4. Aderemi Oluyinka Adewumi & Olawale Joshua Adeleke, 2018. "A survey of recent advances in vehicle routing problems," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(1), pages 155-172, February.
    5. Nicolas Rincon-Garcia & Ben J. Waterson & Tom J. Cherrett, 2018. "Requirements from vehicle routing software: perspectives from literature, developers and the freight industry," Transport Reviews, Taylor & Francis Journals, vol. 38(1), pages 117-138, January.
    6. Jinil Han & Chungmok Lee & Sungsoo Park, 2014. "A Robust Scenario Approach for the Vehicle Routing Problem with Uncertain Travel Times," Transportation Science, INFORMS, vol. 48(3), pages 373-390, August.
    7. Ji, Chenlu & Mandania, Rupal & Liu, Jiyin & Liret, Anne, 2022. "Scheduling on-site service deliveries to minimise the risk of missing appointment times," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    8. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.
    9. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    10. Jorge Oyola & Halvard Arntzen & David L. Woodruff, 2017. "The stochastic vehicle routing problem, a literature review, Part II: solution methods," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 6(4), pages 349-388, December.
    11. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2018. "Vehicle routing problems with multiple trips," Annals of Operations Research, Springer, vol. 271(1), pages 127-159, December.
    12. Mohamed Cissé & Semih Yalçindag & Yannick Kergosien & Evren Sahin & Christophe Lenté & Andrea Matta, 2017. "OR problems related to Home Health Care: A review of relevant routing and scheduling problems," Post-Print hal-01736714, HAL.
    13. Yan Cheng Hsu & Jose L. Walteros & Rajan Batta, 2020. "Solving the petroleum replenishment and routing problem with variable demands and time windows," Annals of Operations Research, Springer, vol. 294(1), pages 9-46, November.
    14. Diego Cattaruzza & Nabil Absi & Dominique Feillet, 2016. "Vehicle routing problems with multiple trips," 4OR, Springer, vol. 14(3), pages 223-259, September.
    15. van Lon, Rinde R.S. & Ferrante, Eliseo & Turgut, Ali E. & Wenseleers, Tom & Vanden Berghe, Greet & Holvoet, Tom, 2016. "Measures of dynamism and urgency in logistics," European Journal of Operational Research, Elsevier, vol. 253(3), pages 614-624.
    16. Stefan Vonolfen & Michael Affenzeller, 2016. "Distribution of waiting time for dynamic pickup and delivery problems," Annals of Operations Research, Springer, vol. 236(2), pages 359-382, January.
    17. Pillac, Victor & Gendreau, Michel & Guéret, Christelle & Medaglia, Andrés L., 2013. "A review of dynamic vehicle routing problems," European Journal of Operational Research, Elsevier, vol. 225(1), pages 1-11.
    18. Giménez-Palacios, Iván & Parreño, Francisco & Álvarez-Valdés, Ramón & Paquay, Célia & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando, 2022. "First-mile logistics parcel pickup: Vehicle routing with packing constraints under disruption," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    19. Lahyani, Rahma & Khemakhem, Mahdi & Semet, Frédéric, 2015. "Rich vehicle routing problems: From a taxonomy to a definition," European Journal of Operational Research, Elsevier, vol. 241(1), pages 1-14.
    20. Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:topjnl:v:26:y:2018:i:1:d:10.1007_s11750-018-0469-4. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.