IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v243y2015i3p883-896.html
   My bibliography  Save this article

The implication of missing the optimal-exercise time of an American option

Author

Listed:
  • Chockalingam, Arun
  • Feng, Haolin

Abstract

The optimal-exercise policy of an American option dictates when the option should be exercised. In this paper, we consider the implications of missing the optimal exercise time of an American option. For the put option, this means holding the option until it is deeper in-the-money when the optimal decision would have been to exercise instead. We derive an upper bound on the maximum possible loss incurred by such an option holder. This upper bound requires no knowledge of the optimal-exercise policy or true price function. This upper bound is a function of only the option-holder’s exercise strategy and the intrinsic value of the option. We show that this result holds true for both put and call options under a variety of market models ranging from the simple Black–Scholes model to complex stochastic-volatility jump-diffusion models. Numerical illustrations of this result are provided. We then use this result to study numerically how the cost of delaying exercise varies across market models and call and put options. We also use this result as a tool to numerically investigate the relation between an option-holder’s risk-preference levels and the maximum possible loss he may incur when adopting a target-payoff policy that is a function of his risk-preference level.

Suggested Citation

  • Chockalingam, Arun & Feng, Haolin, 2015. "The implication of missing the optimal-exercise time of an American option," European Journal of Operational Research, Elsevier, vol. 243(3), pages 883-896.
  • Handle: RePEc:eee:ejores:v:243:y:2015:i:3:p:883-896
    DOI: 10.1016/j.ejor.2014.12.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221714010121
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2014.12.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dilip B. Madan & Peter P. Carr & Eric C. Chang, 1998. "The Variance Gamma Process and Option Pricing," Review of Finance, European Finance Association, vol. 2(1), pages 79-105.
    2. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," Review of Financial Studies, Society for Financial Studies, vol. 14(1), pages 113-147.
    3. Ibáñez, Alfredo & Paraskevopoulos, Ioannis, 2010. "The Sensitivity of American Options to Suboptimal Exercise Strategies," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 45(6), pages 1563-1590, December.
    4. Jin, Xing & Li, Xun & Tan, Hwee Huat & Wu, Zhenyu, 2013. "A computationally efficient state-space partitioning approach to pricing high-dimensional American options via dimension reduction," European Journal of Operational Research, Elsevier, vol. 231(2), pages 362-370.
    5. Stein, Elias M & Stein, Jeremy C, 1991. "Stock Price Distributions with Stochastic Volatility: An Analytic Approach," Review of Financial Studies, Society for Financial Studies, vol. 4(4), pages 727-752.
    6. Heston, Steven L, 1993. "A Closed-Form Solution for Options with Stochastic Volatility with Applications to Bond and Currency Options," Review of Financial Studies, Society for Financial Studies, vol. 6(2), pages 327-343.
    7. Pool, Veronika Krepely & Stoll, Hans R. & Whaley, Robert E., 2008. "Failure to exercise call options: An anomaly and a trading game," Journal of Financial Markets, Elsevier, vol. 11(1), pages 1-35, February.
    8. Allen M. Poteshman & Vitaly Serbin, 2003. "Clearly Irrational Financial Market Behavior: Evidence from the Early Exercise of Exchange Traded Stock Options," Journal of Finance, American Finance Association, vol. 58(1), pages 37-70, February.
    9. Gurdip Bakshi & Nikunj Kapadia, 2003. "Delta-Hedged Gains and the Negative Market Volatility Risk Premium," Review of Financial Studies, Society for Financial Studies, vol. 16(2), pages 527-566.
    10. Malin Engström, 2002. "A note on rational call option exercise," Journal of Futures Markets, John Wiley & Sons, Ltd., vol. 22(5), pages 471-482, May.
    11. Pressacco, Flavio & Gaudenzi, Marcellino & Zanette, Antonino & Ziani, Laura, 2008. "New insights on testing the efficiency of methods of pricing and hedging American options," European Journal of Operational Research, Elsevier, vol. 185(1), pages 235-254, February.
    12. Longstaff, Francis A. & Santa-Clara, Pedro & Schwartz, Eduardo S., 2001. "Throwing away a billion dollars: the cost of suboptimal exercise strategies in the swaptions market," Journal of Financial Economics, Elsevier, vol. 62(1), pages 39-66, October.
    13. Diz, Fernando & Finucane, Thomas J, 1993. "The Rationality of Early Exercise Decisions: Evidence from the S&P 100 Index Options Market," Review of Financial Studies, Society for Financial Studies, vol. 6(4), pages 765-797.
    14. Bollerslev, Tim, 1986. "Generalized autoregressive conditional heteroskedasticity," Journal of Econometrics, Elsevier, vol. 31(3), pages 307-327, April.
    15. Kathryn Barraclough & Robert E. Whaley, 2012. "Early Exercise of Put Options on Stocks," Journal of Finance, American Finance Association, vol. 67(4), pages 1423-1456, August.
    16. Bauer, Rob & Cosemans, Mathijs & Eichholtz, Piet, 2009. "Option trading and individual investor performance," Journal of Banking & Finance, Elsevier, vol. 33(4), pages 731-746, April.
    17. Muthuraman, Kumar, 2008. "A moving boundary approach to American option pricing," Journal of Economic Dynamics and Control, Elsevier, vol. 32(11), pages 3520-3537, November.
    18. Merton, Robert C., 1976. "Option pricing when underlying stock returns are discontinuous," Journal of Financial Economics, Elsevier, vol. 3(1-2), pages 125-144.
    19. Black, Fischer & Scholes, Myron S, 1973. "The Pricing of Options and Corporate Liabilities," Journal of Political Economy, University of Chicago Press, vol. 81(3), pages 637-654, May-June.
    20. Finucane, Thomas J., 1997. "An empirical analysis of common stock call exercise: A note," Journal of Banking & Finance, Elsevier, vol. 21(4), pages 563-571, April.
    21. Peter Carr & Robert Jarrow & Ravi Myneni, 2008. "Alternative Characterizations Of American Put Options," World Scientific Book Chapters, in: Financial Derivatives Pricing Selected Works of Robert Jarrow, chapter 5, pages 85-103, World Scientific Publishing Co. Pte. Ltd..
    22. Gerald H. L. Cheang & Carl Chiarella & Andrew Ziogas, 2013. "The representation of American options prices under stochastic volatility and jump-diffusion dynamics," Quantitative Finance, Taylor & Francis Journals, vol. 13(2), pages 241-253, January.
    23. Arun Chockalingam & Kumar Muthuraman, 2011. "American Options Under Stochastic Volatility," Operations Research, INFORMS, vol. 59(4), pages 793-809, August.
    24. Scott, Louis O., 1987. "Option Pricing when the Variance Changes Randomly: Theory, Estimation, and an Application," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 22(4), pages 419-438, December.
    25. Hull, John C & White, Alan D, 1987. "The Pricing of Options on Assets with Stochastic Volatilities," Journal of Finance, American Finance Association, vol. 42(2), pages 281-300, June.
    26. Longstaff, Francis A & Schwartz, Eduardo S, 2001. "Valuing American Options by Simulation: A Simple Least-Squares Approach," University of California at Los Angeles, Anderson Graduate School of Management qt43n1k4jb, Anderson Graduate School of Management, UCLA.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Fabozzi, Frank J. & Paletta, Tommaso & Stanescu, Silvia & Tunaru, Radu, 2016. "An improved method for pricing and hedging long dated American options," European Journal of Operational Research, Elsevier, vol. 254(2), pages 656-666.
    2. Fabozzi, Frank J. & Paletta, Tommaso & Tunaru, Radu, 2017. "An improved least squares Monte Carlo valuation method based on heteroscedasticity," European Journal of Operational Research, Elsevier, vol. 263(2), pages 698-706.
    3. Anna Battauz & Francesco Rotondi, 2022. "American options and stochastic interest rates," Computational Management Science, Springer, vol. 19(4), pages 567-604, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lim, Terence & Lo, Andrew W. & Merton, Robert C. & Scholes, Myron S., 2006. "The Derivatives Sourcebook," Foundations and Trends(R) in Finance, now publishers, vol. 1(5–6), pages 365-572, April.
    2. Antonio Cosma & Stefano Galluccio & Paola Pederzoli & O. Scaillet, 2012. "Valuing American Options Using Fast Recursive Projections," Swiss Finance Institute Research Paper Series 12-26, Swiss Finance Institute.
    3. Kirkby, J. Lars & Nguyen, Duy & Cui, Zhenyu, 2017. "A unified approach to Bermudan and barrier options under stochastic volatility models with jumps," Journal of Economic Dynamics and Control, Elsevier, vol. 80(C), pages 75-100.
    4. Arun Chockalingam & Kumar Muthuraman, 2011. "American Options Under Stochastic Volatility," Operations Research, INFORMS, vol. 59(4), pages 793-809, August.
    5. Cosma, Antonio & Galluccio, Stefano & Pederzoli, Paola & Scaillet, Olivier, 2020. "Early Exercise Decision in American Options with Dividends, Stochastic Volatility, and Jumps," Journal of Financial and Quantitative Analysis, Cambridge University Press, vol. 55(1), pages 331-356, February.
    6. Chuang-Chang Chang & Jun-Biao Lin & Wei-Che Tsai & Yaw-Huei Wang, 2012. "Using Richardson extrapolation techniques to price American options with alternative stochastic processes," Review of Quantitative Finance and Accounting, Springer, vol. 39(3), pages 383-406, October.
    7. Mark Broadie & Jerome B. Detemple, 2004. "ANNIVERSARY ARTICLE: Option Pricing: Valuation Models and Applications," Management Science, INFORMS, vol. 50(9), pages 1145-1177, September.
    8. Stentoft, Lars, 2011. "American option pricing with discrete and continuous time models: An empirical comparison," Journal of Empirical Finance, Elsevier, vol. 18(5), pages 880-902.
    9. Cui, Zhenyu & Lars Kirkby, J. & Nguyen, Duy, 2019. "A general framework for time-changed Markov processes and applications," European Journal of Operational Research, Elsevier, vol. 273(2), pages 785-800.
    10. Henri Bertholon & Alain Monfort & Fulvio Pegoraro, 2006. "Pricing and Inference with Mixtures of Conditionally Normal Processes," Working Papers 2006-28, Center for Research in Economics and Statistics.
    11. Lars Stentoft, 2008. "Option Pricing using Realized Volatility," CREATES Research Papers 2008-13, Department of Economics and Business Economics, Aarhus University.
    12. Katarzyna Toporek, 2012. "Simple is better. Empirical comparison of American option valuation methods," Ekonomia journal, Faculty of Economic Sciences, University of Warsaw, vol. 29.
    13. Gonçalo Faria & João Correia-da-Silva, 2014. "A closed-form solution for options with ambiguity about stochastic volatility," Review of Derivatives Research, Springer, vol. 17(2), pages 125-159, July.
    14. Eickholt, Mathias & Entrop, Oliver & Wilkens, Marco, 2014. "Individual investors and suboptimal early exercises in the fixed-income market," Passauer Diskussionspapiere, Betriebswirtschaftliche Reihe 14, University of Passau, Faculty of Business and Economics.
    15. Blessing Taruvinga & Boda Kang & Christina Sklibosios Nikitopoulos, 2018. "Pricing American Options with Jumps in Asset and Volatility," Research Paper Series 394, Quantitative Finance Research Centre, University of Technology, Sydney.
    16. Ghysels, E. & Harvey, A. & Renault, E., 1995. "Stochastic Volatility," Papers 95.400, Toulouse - GREMAQ.
    17. Carl Chiarella & Xue-Zhong He & Christina Sklibosios Nikitopoulos, 2015. "Derivative Security Pricing," Dynamic Modeling and Econometrics in Economics and Finance, Springer, edition 127, number 978-3-662-45906-5, July-Dece.
    18. Simon Scheidegger & Adrien Treccani, 2021. "Pricing American Options under High-Dimensional Models with Recursive Adaptive Sparse Expectations [Telling from Discrete Data Whether the Underlying Continuous-Time Model Is a Diffusion]," Journal of Financial Econometrics, Oxford University Press, vol. 19(2), pages 258-290.
    19. Kozarski, R., 2013. "Pricing and hedging in the VIX derivative market," Other publications TiSEM 221fefe0-241e-4914-b6bd-c, Tilburg University, School of Economics and Management.
    20. Duy Nguyen, 2018. "A hybrid Markov chain-tree valuation framework for stochastic volatility jump diffusion models," International Journal of Financial Engineering (IJFE), World Scientific Publishing Co. Pte. Ltd., vol. 5(04), pages 1-30, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:243:y:2015:i:3:p:883-896. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.