IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v196y2009i1p155-161.html
   My bibliography  Save this article

Multiobjective traveling salesperson problem on Halin graphs

Author

Listed:
  • Özpeynirci, Özgür
  • Köksalan, Murat

Abstract

In this paper, we study traveling salesperson (TSP) and bottleneck traveling salesperson (BTSP) problems on special graphs called Halin graphs. Although both problems are NP-Hard on general graphs, they are polynomially solvable on Halin graphs. We address the multiobjective versions of these problems. We show computational complexities of finding a single nondominated point as well as finding all nondominated points for different objective function combinations. We develop algorithms for the polynomially solvable combinations.

Suggested Citation

  • Özpeynirci, Özgür & Köksalan, Murat, 2009. "Multiobjective traveling salesperson problem on Halin graphs," European Journal of Operational Research, Elsevier, vol. 196(1), pages 155-161, July.
  • Handle: RePEc:eee:ejores:v:196:y:2009:i:1:p:155-161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(08)00367-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. COULLARD, Collette R. & RAIS, Abdur & RARDIN, Ronald L. & WAGNER, Donald K., 1993. "Linear-Time Algorithms for the 2-Connected Steiner Subgraph Problem on Special Classes of Graphs," LIDAM Reprints CORE 1037, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    2. Y. P. Aneja & K. P. K. Nair, 1979. "Bicriteria Transportation Problem," Management Science, INFORMS, vol. 25(1), pages 73-78, January.
    3. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Florios, Kostas & Mavrotas, George, 2014. "Generation of the exact Pareto set in multi-objective traveling salesman and set covering problems," MPRA Paper 105074, University Library of Munich, Germany.
    2. Diclehan Tezcaner Öztürk & Murat Köksalan, 2016. "An interactive approach for biobjective integer programs under quasiconvex preference functions," Annals of Operations Research, Springer, vol. 244(2), pages 677-696, September.
    3. Diclehan Tezcaner & Murat Köksalan, 2011. "An Interactive Algorithm for Multi-objective Route Planning," Journal of Optimization Theory and Applications, Springer, vol. 150(2), pages 379-394, August.
    4. Çela, Eranda & Deineko, Vladimir & Woeginger, Gerhard J., 2012. "The x-and-y-axes travelling salesman problem," European Journal of Operational Research, Elsevier, vol. 223(2), pages 333-345.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. S. Dutta & S. Acharya & Rajashree Mishra, 2016. "Genetic algorithm based fuzzy stochastic transportation programming problem with continuous random variables," OPSEARCH, Springer;Operational Research Society of India, vol. 53(4), pages 835-872, December.
    2. Yang, X. Q. & Goh, C. J., 1997. "A method for convex curve approximation," European Journal of Operational Research, Elsevier, vol. 97(1), pages 205-212, February.
    3. Singh, Preetvanti & Saxena, P. K., 2003. "The multiple objective time transportation problem with additional restrictions," European Journal of Operational Research, Elsevier, vol. 146(3), pages 460-476, May.
    4. Pankaj Gupta & Mukesh Mehlawat, 2007. "An algorithm for a fuzzy transportation problem to select a new type of coal for a steel manufacturing unit," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 15(1), pages 114-137, July.
    5. Li, Yuan & Chen, Haoxun & Prins, Christian, 2016. "Adaptive large neighborhood search for the pickup and delivery problem with time windows, profits, and reserved requests," European Journal of Operational Research, Elsevier, vol. 252(1), pages 27-38.
    6. Racha El-Hajj & Rym Nesrine Guibadj & Aziz Moukrim & Mehdi Serairi, 2020. "A PSO based algorithm with an efficient optimal split procedure for the multiperiod vehicle routing problem with profit," Annals of Operations Research, Springer, vol. 291(1), pages 281-316, August.
    7. Azi, Nabila & Gendreau, Michel & Potvin, Jean-Yves, 2010. "An exact algorithm for a vehicle routing problem with time windows and multiple use of vehicles," European Journal of Operational Research, Elsevier, vol. 202(3), pages 756-763, May.
    8. Andrzej Jaszkiewicz & Thibaut Lust, 2017. "Proper balance between search towards and along Pareto front: biobjective TSP case study," Annals of Operations Research, Springer, vol. 254(1), pages 111-130, July.
    9. Daniel Negrotto & Irene Loiseau, 2021. "A Branch & Cut algorithm for the prize-collecting capacitated location routing problem," TOP: An Official Journal of the Spanish Society of Statistics and Operations Research, Springer;Sociedad de Estadística e Investigación Operativa, vol. 29(1), pages 34-57, April.
    10. Archetti, Claudia & Corberán, Ángel & Plana, Isaac & Sanchis, José Maria & Speranza, M. Grazia, 2015. "A matheuristic for the Team Orienteering Arc Routing Problem," European Journal of Operational Research, Elsevier, vol. 245(2), pages 392-401.
    11. Leticia Vargas & Nicolas Jozefowiez & Sandra Ulrich Ngueveu, 2017. "A dynamic programming operator for tour location problems applied to the covering tour problem," Journal of Heuristics, Springer, vol. 23(1), pages 53-80, February.
    12. Anthony Przybylski & Xavier Gandibleux & Matthias Ehrgott, 2010. "A Recursive Algorithm for Finding All Nondominated Extreme Points in the Outcome Set of a Multiobjective Integer Programme," INFORMS Journal on Computing, INFORMS, vol. 22(3), pages 371-386, August.
    13. Sun, Peng & Veelenturf, Lucas P. & Hewitt, Mike & Van Woensel, Tom, 2018. "The time-dependent pickup and delivery problem with time windows," Transportation Research Part B: Methodological, Elsevier, vol. 116(C), pages 1-24.
    14. Yıldız, Gazi Bilal & Soylu, Banu, 2019. "A multiobjective post-sales guarantee and repair services network design problem," International Journal of Production Economics, Elsevier, vol. 216(C), pages 305-320.
    15. Fattahi, Ali & Turkay, Metin, 2018. "A one direction search method to find the exact nondominated frontier of biobjective mixed-binary linear programming problems," European Journal of Operational Research, Elsevier, vol. 266(2), pages 415-425.
    16. Zhang Yang & Jiacheng Li & Lei Li, 2020. "Time-Dependent Theme Park Routing Problem by Partheno-Genetic Algorithm," Mathematics, MDPI, vol. 8(12), pages 1-20, December.
    17. Balcik, Burcu, 2017. "Site selection and vehicle routing for post-disaster rapid needs assessment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 101(C), pages 30-58.
    18. Masar Al-Rabeeah & Santosh Kumar & Ali Al-Hasani & Elias Munapo & Andrew Eberhard, 2019. "Bi-objective integer programming analysis based on the characteristic equation," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(5), pages 937-944, October.
    19. Stavropoulou, F. & Repoussis, P.P. & Tarantilis, C.D., 2019. "The Vehicle Routing Problem with Profits and consistency constraints," European Journal of Operational Research, Elsevier, vol. 274(1), pages 340-356.
    20. Soylu, Banu & Katip, Hatice, 2019. "A multiobjective hub-airport location problem for an airline network design," European Journal of Operational Research, Elsevier, vol. 277(2), pages 412-425.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:196:y:2009:i:1:p:155-161. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.