IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v274y2019i1p340-356.html
   My bibliography  Save this article

The Vehicle Routing Problem with Profits and consistency constraints

Author

Listed:
  • Stavropoulou, F.
  • Repoussis, P.P.
  • Tarantilis, C.D.

Abstract

This paper models and solves a new transportation problem of practical importance; the Consistent Vehicle Routing Problem with Profits. There are two sets of customers, the frequent customers that are mandatory to service and the non-frequent potential customers with known and estimated profits respectively, both having known demands and service requirements over a planning horizon of multiple days. The objective is to determine the vehicle routes that maximize the net profit, while satisfying vehicle capacity, route duration and consistency constraints. A new mathematical model is proposed that captures the profit collecting nature, as well as other features of the problem. For addressing this computationally challenging problem, an Adaptive Tabu Search has been developed, utilizing both short- and long-term memory structures to guide the search process. The proposed metaheuristic algorithm is evaluated on existing, as well as newly generated benchmark problem instances. Our computational experiments demonstrate the effectiveness of our algorithm, as it matches the optimal solutions obtained for small-scale instances and performs well on large-scale instances. Lastly, the trade-off between the acquired profits and consistent customer service is examined and various managerial insights are derived.

Suggested Citation

  • Stavropoulou, F. & Repoussis, P.P. & Tarantilis, C.D., 2019. "The Vehicle Routing Problem with Profits and consistency constraints," European Journal of Operational Research, Elsevier, vol. 274(1), pages 340-356.
  • Handle: RePEc:eee:ejores:v:274:y:2019:i:1:p:340-356
    DOI: 10.1016/j.ejor.2018.09.046
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221718308282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2018.09.046?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maya Duque, P.A. & Castro, M. & Sörensen, K. & Goos, P., 2015. "Home care service planning. The case of Landelijke Thuiszorg," European Journal of Operational Research, Elsevier, vol. 243(1), pages 292-301.
    2. Ilgaz Sungur & Yingtao Ren & Fernando Ordóñez & Maged Dessouky & Hongsheng Zhong, 2010. "A Model and Algorithm for the Courier Delivery Problem with Uncertainty," Transportation Science, INFORMS, vol. 44(2), pages 193-205, May.
    3. Ioachim, Irina & Desrosiers, Jacques & Soumis, Francois & Belanger, Nicolas, 1999. "Fleet assignment and routing with schedule synchronization constraints," European Journal of Operational Research, Elsevier, vol. 119(1), pages 75-90, November.
    4. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part I: Route Construction and Local Search Algorithms," Transportation Science, INFORMS, vol. 39(1), pages 104-118, February.
    5. Luo, Zhixing & Qin, Hu & Che, ChanHou & Lim, Andrew, 2015. "On service consistency in multi-period vehicle routing," European Journal of Operational Research, Elsevier, vol. 243(3), pages 731-744.
    6. Braekers, Kris & Kovacs, Attila A., 2016. "A multi-period dial-a-ride problem with driver consistency," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 355-377.
    7. Olli Bräysy & Michel Gendreau, 2005. "Vehicle Routing Problem with Time Windows, Part II: Metaheuristics," Transportation Science, INFORMS, vol. 39(1), pages 119-139, February.
    8. Attila A. Kovacs & Bruce L. Golden & Richard F. Hartl & Sophie N. Parragh, 2015. "The Generalized Consistent Vehicle Routing Problem," Transportation Science, INFORMS, vol. 49(4), pages 796-816, November.
    9. C Archetti & D Feillet & A Hertz & M G Speranza, 2009. "The capacitated team orienteering and profitable tour problems," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 831-842, June.
    10. Chris Groër & Bruce Golden & Edward Wasil, 2009. "The Consistent Vehicle Routing Problem," Manufacturing & Service Operations Management, INFORMS, vol. 11(4), pages 630-643, February.
    11. Wouter Souffriau & Pieter Vansteenwegen & Greet Vanden Berghe & Dirk Van Oudheusden, 2013. "The Multiconstraint Team Orienteering Problem with Multiple Time Windows," Transportation Science, INFORMS, vol. 47(1), pages 53-63, February.
    12. Deniz Aksen & Necati Aras, 2006. "Customer Selection and Profit Maximization in Vehicle Routing Problems," Operations Research Proceedings, in: Hans-Dietrich Haasis & Herbert Kopfer & Jörn Schönberger (ed.), Operations Research Proceedings 2005, pages 37-42, Springer.
    13. Subramanyam, Anirudh & Gounaris, Chrysanthos E., 2016. "A branch-and-cut framework for the consistent traveling salesman problem," European Journal of Operational Research, Elsevier, vol. 248(2), pages 384-395.
    14. Tarantilis, C.D. & Stavropoulou, F. & Repoussis, P.P., 2013. "The Capacitated Team Orienteering Problem: A Bi-level Filter-and-Fan method," European Journal of Operational Research, Elsevier, vol. 224(1), pages 65-78.
    15. Kotiloglu, S. & Lappas, T. & Pelechrinis, K. & Repoussis, P.P., 2017. "Personalized multi-period tour recommendations," Tourism Management, Elsevier, vol. 62(C), pages 76-88.
    16. Janssens, Jochen & Van den Bergh, Joos & Sörensen, Kenneth & Cattrysse, Dirk, 2015. "Multi-objective microzone-based vehicle routing for courier companies: From tactical to operational planning," European Journal of Operational Research, Elsevier, vol. 242(1), pages 222-231.
    17. Dominique Feillet & Pierre Dejax & Michel Gendreau, 2005. "Traveling Salesman Problems with Profits," Transportation Science, INFORMS, vol. 39(2), pages 188-205, May.
    18. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    19. Kara, Imdat & Laporte, Gilbert & Bektas, Tolga, 2004. "A note on the lifted Miller-Tucker-Zemlin subtour elimination constraints for the capacitated vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 158(3), pages 793-795, November.
    20. Kunlei Lian & Ashlea Bennett Milburn & Ronald L. Rardin, 2016. "An improved multi-directional local search algorithm for the multi-objective consistent vehicle routing problem," IISE Transactions, Taylor & Francis Journals, vol. 48(10), pages 975-992, October.
    21. Vansteenwegen, Pieter & Souffriau, Wouter & Oudheusden, Dirk Van, 2011. "The orienteering problem: A survey," European Journal of Operational Research, Elsevier, vol. 209(1), pages 1-10, February.
    22. Hewitt, Mike & Nowak, Maciek & Gala, Leo, 2015. "Consolidating home meal delivery with limited operational disruption," European Journal of Operational Research, Elsevier, vol. 243(1), pages 281-291.
    23. Repoussis, Panagiotis P. & Tarantilis, Christos D. & Zachariadis, Emmanouil E., 2017. "Moving products between location pairs: Cross-docking versus direct-shippingAuthor-Name: Nikolopoulou, Amalia I," European Journal of Operational Research, Elsevier, vol. 256(3), pages 803-819.
    24. Stenger, A. & Schneider, M. & Goeke, D., 2013. "The Prize-Collecting Vehicle Routing Problem with Single and Multiple Depots and Non-Linear Cost," Publications of Darmstadt Technical University, Institute for Business Studies (BWL) 62372, Darmstadt Technical University, Department of Business Administration, Economics and Law, Institute for Business Studies (BWL).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohsen Emadikhiav & David Bergman & Robert Day, 2020. "Consistent Routing and Scheduling with Simultaneous Pickups and Deliveries," Production and Operations Management, Production and Operations Management Society, vol. 29(8), pages 1937-1955, August.
    2. Yu Wu & Bo Zeng & Siming Huang, 2019. "A Dynamic Strategy for Home Pick-Up Service with Uncertain Customer Requests and Its Implementation," Sustainability, MDPI, vol. 11(7), pages 1-21, April.
    3. Zhen, Lu & Baldacci, Roberto & Tan, Zheyi & Wang, Shuaian & Lyu, Junyan, 2022. "Scheduling heterogeneous delivery tasks on a mixed logistics platform," European Journal of Operational Research, Elsevier, vol. 298(2), pages 680-698.
    4. Fang, Chao & Han, Zonglei & Wang, Wei & Zio, Enrico, 2023. "Routing UAVs in landslides Monitoring: A neural network heuristic for team orienteering with mandatory visits," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    5. Nolz, Pamela C. & Absi, Nabil & Feillet, Dominique & Seragiotto, Clóvis, 2022. "The consistent electric-Vehicle routing problem with backhauls and charging management," European Journal of Operational Research, Elsevier, vol. 302(2), pages 700-716.
    6. Yang, Meng & Ni, Yaodong & Song, Qinyu, 2022. "Optimizing driver consistency in the vehicle routing problem under uncertain environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    7. Jost, Christian & Jungwirth, Alexander & Kolisch, Rainer & Schiffels, Sebastian, 2022. "Consistent vehicle routing with pickup decisions - Insights from sport academy training transfers," European Journal of Operational Research, Elsevier, vol. 298(1), pages 337-350.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Meng & Ni, Yaodong & Song, Qinyu, 2022. "Optimizing driver consistency in the vehicle routing problem under uncertain environment," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 164(C).
    2. Jost, Christian & Jungwirth, Alexander & Kolisch, Rainer & Schiffels, Sebastian, 2022. "Consistent vehicle routing with pickup decisions - Insights from sport academy training transfers," European Journal of Operational Research, Elsevier, vol. 298(1), pages 337-350.
    3. Ulmer, Marlin & Nowak, Maciek & Mattfeld, Dirk & Kaminski, Bogumił, 2020. "Binary driver-customer familiarity in service routing," European Journal of Operational Research, Elsevier, vol. 286(2), pages 477-493.
    4. Quirion-Blais, Olivier & Chen, Lu, 2021. "A case-based reasoning approach to solve the vehicle routing problem with time windows and drivers’ experience," Omega, Elsevier, vol. 102(C).
    5. Martins, Sara & Ostermeier, Manuel & Amorim, Pedro & Hübner, Alexander & Almada-Lobo, Bernardo, 2019. "Product-oriented time window assignment for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 893-909.
    6. Gunawan, Aldy & Lau, Hoong Chuin & Vansteenwegen, Pieter, 2016. "Orienteering Problem: A survey of recent variants, solution approaches and applications," European Journal of Operational Research, Elsevier, vol. 255(2), pages 315-332.
    7. Orlis, Christos & Laganá, Demetrio & Dullaert, Wout & Vigo, Daniele, 2020. "Distribution with Quality of Service Considerations: The Capacitated Routing Problem with Profits and Service Level Requirements," Omega, Elsevier, vol. 93(C).
    8. Álvarez-Miranda, Eduardo & Luipersbeck, Martin & Sinnl, Markus, 2018. "Gotta (efficiently) catch them all: Pokémon GO meets Orienteering Problems," European Journal of Operational Research, Elsevier, vol. 265(2), pages 779-794.
    9. Vidal, Thibaut & Laporte, Gilbert & Matl, Piotr, 2020. "A concise guide to existing and emerging vehicle routing problem variants," European Journal of Operational Research, Elsevier, vol. 286(2), pages 401-416.
    10. Dominik Goeke & Roberto Roberti & Michael Schneider, 2019. "Exact and Heuristic Solution of the Consistent Vehicle-Routing Problem," Transportation Science, INFORMS, vol. 53(4), pages 1023-1042, July.
    11. Bian, Zheyong & Liu, Xiang, 2018. "A real-time adjustment strategy for the operational level stochastic orienteering problem: A simulation-aided optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 115(C), pages 246-266.
    12. Mohamed Cissé & Semih Yalçindag & Yannick Kergosien & Evren Sahin & Christophe Lenté & Andrea Matta, 2017. "OR problems related to Home Health Care: A review of relevant routing and scheduling problems," Post-Print hal-01736714, HAL.
    13. Braekers, Kris & Kovacs, Attila A., 2016. "A multi-period dial-a-ride problem with driver consistency," Transportation Research Part B: Methodological, Elsevier, vol. 94(C), pages 355-377.
    14. Anirudh Subramanyam & Chrysanthos E. Gounaris, 2018. "A Decomposition Algorithm for the Consistent Traveling Salesman Problem with Vehicle Idling," Transportation Science, INFORMS, vol. 52(2), pages 386-401, March.
    15. Subramanyam, Anirudh & Wang, Akang & Gounaris, Chrysanthos E., 2018. "A scenario decomposition algorithm for strategic time window assignment vehicle routing problems," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 296-317.
    16. Dumez, Dorian & Lehuédé, Fabien & Péton, Olivier, 2021. "A large neighborhood search approach to the vehicle routing problem with delivery options," Transportation Research Part B: Methodological, Elsevier, vol. 144(C), pages 103-132.
    17. Paola Cappanera & Maria Grazia Scutellà, 2022. "Addressing consistency and demand uncertainty in the Home Care planning problem," Flexible Services and Manufacturing Journal, Springer, vol. 34(1), pages 1-39, March.
    18. Zajac, Sandra & Huber, Sandra, 2021. "Objectives and methods in multi-objective routing problems: a survey and classification scheme," European Journal of Operational Research, Elsevier, vol. 290(1), pages 1-25.
    19. Zhen, Lu & Gao, Jiajing & Tan, Zheyi & Laporte, Gilbert & Baldacci, Roberto, 2023. "Territorial design for customers with demand frequency," European Journal of Operational Research, Elsevier, vol. 309(1), pages 82-101.
    20. Kotiloglu, S. & Lappas, T. & Pelechrinis, K. & Repoussis, P.P., 2017. "Personalized multi-period tour recommendations," Tourism Management, Elsevier, vol. 62(C), pages 76-88.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:274:y:2019:i:1:p:340-356. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.