IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v177y2007i1p281-309.html
   My bibliography  Save this article

Multi-period planning and uncertainty issues in cellular manufacturing: A review and future directions

Author

Listed:
  • Balakrishnan, Jaydeep
  • Cheng, Chun Hung

Abstract

No abstract is available for this item.

Suggested Citation

  • Balakrishnan, Jaydeep & Cheng, Chun Hung, 2007. "Multi-period planning and uncertainty issues in cellular manufacturing: A review and future directions," European Journal of Operational Research, Elsevier, vol. 177(1), pages 281-309, February.
  • Handle: RePEc:eee:ejores:v:177:y:2007:i:1:p:281-309
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(05)00904-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Biskup, Dirk & Simons, Dirk, 2004. "Common due date scheduling with autonomous and induced learning," European Journal of Operational Research, Elsevier, vol. 159(3), pages 606-616, December.
    2. Montreuil, Benoit & Laforge, Andree, 1992. "Dynamic layout design given a scenario tree of probable futures," European Journal of Operational Research, Elsevier, vol. 63(2), pages 271-286, December.
    3. Albino, Vito & Claudio Garavelli, A., 1999. "Limited flexibility in cellular manufacturing systems: A simulation study," International Journal of Production Economics, Elsevier, vol. 60(1), pages 447-455, April.
    4. Saif Benjaafar & Sunderesh S. Heragu & Shahrukh A. Irani, 2002. "Next Generation Factory Layouts: Research Challenges and Recent Progress," Interfaces, INFORMS, vol. 32(6), pages 58-76, December.
    5. Yoram Wind & Thomas L. Saaty, 1980. "Marketing Applications of the Analytic Hierarchy Process," Management Science, INFORMS, vol. 26(7), pages 641-658, July.
    6. Kannan, Vijay R. & Palocsay, Susan W., 1999. "Cellular vs process layouts: an analytic investigation of the impact of learning on shop performance," Omega, Elsevier, vol. 27(5), pages 583-592, October.
    7. William C. Jordan & Stephen C. Graves, 1995. "Principles on the Benefits of Manufacturing Process Flexibility," Management Science, INFORMS, vol. 41(4), pages 577-594, April.
    8. Meir J. Rosenblatt, 1986. "The Dynamics of Plant Layout," Management Science, INFORMS, vol. 32(1), pages 76-86, January.
    9. John S. Morris & Richard J. Tersine, 1990. "A Simulation Analysis of Factors Influencing the Attractiveness of Group Technology Cellular Layouts," Management Science, INFORMS, vol. 36(12), pages 1567-1578, December.
    10. Palekar, Udatta S. & Batta, Rajan & Bosch, Robert M. & Elhence, Sharad, 1992. "Modeling uncertainties in plant layout problems," European Journal of Operational Research, Elsevier, vol. 63(2), pages 347-359, December.
    11. Prince, J. & Kay, J. M., 2003. "Combining lean and agile characteristics: Creation of virtual groups by enhanced production flow analysis," International Journal of Production Economics, Elsevier, vol. 85(3), pages 305-318, September.
    12. B R Sarker & Z Li, 2001. "Job routing and operations scheduling: a network-based virtual cell formation approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 52(6), pages 673-681, June.
    13. John Boudreau & Wallace Hopp & John O. McClain & L. Joseph Thomas, 2003. "On the Interface Between Operations and Human Resources Management," Manufacturing & Service Operations Management, INFORMS, vol. 5(3), pages 179-202, September.
    14. Yang, Taho & Peters, Brett A., 1998. "Flexible machine layout design for dynamic and uncertain production environments," European Journal of Operational Research, Elsevier, vol. 108(1), pages 49-64, July.
    15. Kouvelis, Panagiotis & Kurawarwala, Abbas A. & Gutierrez, Genaro J., 1992. "Algorithms for robust single and multiple period layout planning for manufacturing systems," European Journal of Operational Research, Elsevier, vol. 63(2), pages 287-303, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mingxing Li & Ray Y. Zhong & Ting Qu & George Q. Huang, 2022. "Spatial–temporal out-of-order execution for advanced planning and scheduling in cyber-physical factories," Journal of Intelligent Manufacturing, Springer, vol. 33(5), pages 1355-1372, June.
    2. Grzegorz Bocewicz & Zbigniew Banaszak & Izabela Nielsen, 2019. "Multimodal processes prototyping subject to grid-like network and fuzzy operation time constraints," Annals of Operations Research, Springer, vol. 273(1), pages 561-585, February.
    3. Papaioannou, Grammatoula & Wilson, John M., 2010. "The evolution of cell formation problem methodologies based on recent studies (1997-2008): Review and directions for future research," European Journal of Operational Research, Elsevier, vol. 206(3), pages 509-521, November.
    4. Akash Tayal & Angappa Gunasekaran & Surya Prakash Singh & Rameshwar Dubey & Thanos Papadopoulos, 2017. "Formulating and solving sustainable stochastic dynamic facility layout problem: a key to sustainable operations," Annals of Operations Research, Springer, vol. 253(1), pages 621-655, June.
    5. Salah Elaskari & Uday Venkatadri, 2022. "Understanding the Design Continuum Between Group Technology and Fractal Cell Designs for Manufacturing Systems Through the Central Backup Cellular Manufacturing System," SN Operations Research Forum, Springer, vol. 3(1), pages 1-37, March.
    6. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank & Hungerländer, Philipp & Maier, Kerstin, 2023. "Exact approaches for the combined cell layout problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 530-546.
    7. Safaei, Nima & Tavakkoli-Moghaddam, Reza, 2009. "Integrated multi-period cell formation and subcontracting production planning in dynamic cellular manufacturing systems," International Journal of Production Economics, Elsevier, vol. 120(2), pages 301-314, August.
    8. Guo, Daqiang & Li, Mingxing & Lyu, Zhongyuan & Kang, Kai & Wu, Wei & Zhong, Ray Y. & Huang, George Q., 2021. "Synchroperation in industry 4.0 manufacturing," International Journal of Production Economics, Elsevier, vol. 238(C).
    9. Werners, Brigitte & Wülfing, Thomas, 2010. "Robust optimization of internal transports at a parcel sorting center operated by Deutsche Post World Net," European Journal of Operational Research, Elsevier, vol. 201(2), pages 419-426, March.
    10. Kuldeep Lamba & Ravi Kumar & Shraddha Mishra & Shubhangini Rajput, 2020. "Sustainable dynamic cellular facility layout: a solution approach using simulated annealing-based meta-heuristic," Annals of Operations Research, Springer, vol. 290(1), pages 5-26, July.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Saif Benjaafar & Sunderesh S. Heragu & Shahrukh A. Irani, 2002. "Next Generation Factory Layouts: Research Challenges and Recent Progress," Interfaces, INFORMS, vol. 32(6), pages 58-76, December.
    2. Dunker, Thomas & Radons, Gunter & Westkamper, Engelbert, 2005. "Combining evolutionary computation and dynamic programming for solving a dynamic facility layout problem," European Journal of Operational Research, Elsevier, vol. 165(1), pages 55-69, August.
    3. Garavelli, A. Claudio, 2001. "Performance analysis of a batch production system with limited flexibility," International Journal of Production Economics, Elsevier, vol. 69(1), pages 39-48, January.
    4. Yang, Taho & Peters, Brett A., 1998. "Flexible machine layout design for dynamic and uncertain production environments," European Journal of Operational Research, Elsevier, vol. 108(1), pages 49-64, July.
    5. Akash Tayal & Surya Prakash Singh, 2018. "Integrating big data analytic and hybrid firefly-chaotic simulated annealing approach for facility layout problem," Annals of Operations Research, Springer, vol. 270(1), pages 489-514, November.
    6. Liu, Jingfa & Wang, Dawen & He, Kun & Xue, Yu, 2017. "Combining Wang–Landau sampling algorithm and heuristics for solving the unequal-area dynamic facility layout problem," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1052-1063.
    7. Balakrishnan, Jaydeep & Cheng, Chun Hung, 1998. "Dynamic layout algorithms: a state-of-the-art survey," Omega, Elsevier, vol. 26(4), pages 507-521, August.
    8. McKendall Jr., Alan R. & Hakobyan, Artak, 2010. "Heuristics for the dynamic facility layout problem with unequal-area departments," European Journal of Operational Research, Elsevier, vol. 201(1), pages 171-182, February.
    9. Yifei Zhao & Stein W. Wallace, 2016. "Appraising redundancy in facility layout," International Journal of Production Research, Taylor & Francis Journals, vol. 54(3), pages 665-679, February.
    10. Vitayasak, Srisatja & Pongcharoen, Pupong & Hicks, Chris, 2017. "A tool for solving stochastic dynamic facility layout problems with stochastic demand using either a Genetic Algorithm or modified Backtracking Search Algorithm," International Journal of Production Economics, Elsevier, vol. 190(C), pages 146-157.
    11. Bock, Stefan & Hoberg, Kai, 2007. "Detailed layout planning for irregularly-shaped machines with transportation path design," European Journal of Operational Research, Elsevier, vol. 177(2), pages 693-718, March.
    12. Mehmet Burak Şenol & Ekrem Alper Murat, 2023. "A sequential solution heuristic for continuous facility layout problems," Annals of Operations Research, Springer, vol. 320(1), pages 355-377, January.
    13. Garavelli, A. Claudio, 2003. "Flexibility configurations for the supply chain management," International Journal of Production Economics, Elsevier, vol. 85(2), pages 141-153, August.
    14. Häntsch, Marius & Huchzermeier, Arnd, 2016. "Transparency of risk for global and complex network decisions in the automotive industry," International Journal of Production Economics, Elsevier, vol. 175(C), pages 81-95.
    15. Chakravorty, Satya S. & Hales, Douglas N., 2004. "Implications of cell design implementation: A case study and analysis," European Journal of Operational Research, Elsevier, vol. 152(3), pages 602-614, February.
    16. Agarwal, Ashish & Shankar, Ravi & Tiwari, M.K., 2006. "Modeling the metrics of lean, agile and leagile supply chain: An ANP-based approach," European Journal of Operational Research, Elsevier, vol. 173(1), pages 211-225, August.
    17. Balakrishnan, Jaydeep & Cheng, Chun Hung, 2006. "A note on "a hybrid genetic algorithm for the dynamic plant layout problem"," International Journal of Production Economics, Elsevier, vol. 103(1), pages 87-89, September.
    18. Legros, Benjamin & Jouini, Oualid & Dallery, Yves, 2015. "A flexible architecture for call centers with skill-based routing," International Journal of Production Economics, Elsevier, vol. 159(C), pages 192-207.
    19. Albino, Vito & Claudio Garavelli, A., 1999. "Limited flexibility in cellular manufacturing systems: A simulation study," International Journal of Production Economics, Elsevier, vol. 60(1), pages 447-455, April.
    20. Ali Derakhshan Asl & Kuan Yew Wong, 2017. "Solving unequal-area static and dynamic facility layout problems using modified particle swarm optimization," Journal of Intelligent Manufacturing, Springer, vol. 28(6), pages 1317-1336, August.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:177:y:2007:i:1:p:281-309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.