IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v206y2010i3p509-521.html
   My bibliography  Save this article

The evolution of cell formation problem methodologies based on recent studies (1997-2008): Review and directions for future research

Author

Listed:
  • Papaioannou, Grammatoula
  • Wilson, John M.

Abstract

This paper presents a literature review of the cell formation (CF) problem concentrating on formulations proposed in the last decade. It refers to a number of solution approaches that have been employed for CF such as mathematical programming, heuristic and metaheuristic methodologies and artificial intelligence strategies. A comparison and evaluation of all methodologies is attempted and some shortcomings are highlighted. Finally, suggestions for future research are proposed useful for CF researchers.

Suggested Citation

  • Papaioannou, Grammatoula & Wilson, John M., 2010. "The evolution of cell formation problem methodologies based on recent studies (1997-2008): Review and directions for future research," European Journal of Operational Research, Elsevier, vol. 206(3), pages 509-521, November.
  • Handle: RePEc:eee:ejores:v:206:y:2010:i:3:p:509-521
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(09)00788-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marti, Rafael & Laguna, Manuel & Glover, Fred, 2006. "Principles of scatter search," European Journal of Operational Research, Elsevier, vol. 169(2), pages 359-372, March.
    2. N. Megala & Chandrasekharan Rajendran & Ram Gopalan, 2008. "An ant colony algorithm for cell-formation in cellular manufacturing systems," European Journal of Industrial Engineering, Inderscience Enterprises Ltd, vol. 2(3), pages 298-336.
    3. R Tavakkoli-Moghaddam & N Safaei & F Sassani, 2008. "A new solution for a dynamic cell formation problem with alternative routing and machine costs using simulated annealing," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 59(4), pages 443-454, April.
    4. Ng, Shu Ming, 1993. "Worst-case analysis of an algorithm for cellular manufacturing," European Journal of Operational Research, Elsevier, vol. 69(3), pages 384-398, September.
    5. Nsakanda, Aaron Luntala & Diaby, Moustapha & Price, Wilson L., 2006. "Hybrid genetic approach for solving large-scale capacitated cell formation problems with multiple routings," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1051-1070, June.
    6. Eglese, R. W., 1990. "Simulated annealing: A tool for operational research," European Journal of Operational Research, Elsevier, vol. 46(3), pages 271-281, June.
    7. M Diaby & A L Nsakanda, 2006. "Large-scale capacitated part-routing in the presence of process and routing flexibilities and setup costs," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 57(9), pages 1100-1112, September.
    8. Balakrishnan, Jaydeep & Cheng, Chun Hung, 2007. "Multi-period planning and uncertainty issues in cellular manufacturing: A review and future directions," European Journal of Operational Research, Elsevier, vol. 177(1), pages 281-309, February.
    9. Wu, Xiaodan & Chu, Chao-Hsien & Wang, Yunfeng & Yan, Weili, 2007. "A genetic algorithm for cellular manufacturing design and layout," European Journal of Operational Research, Elsevier, vol. 181(1), pages 156-167, August.
    10. Souilah, Abdelghani, 1995. "Simulated annealing for manufacturing systems layout design," European Journal of Operational Research, Elsevier, vol. 82(3), pages 592-614, May.
    11. Yang, Miin-Shen & Yang, Jenn-Hwai, 2008. "Machine-part cell formation in group technology using a modified ART1 method," European Journal of Operational Research, Elsevier, vol. 188(1), pages 140-152, July.
    12. Gravel, Marc & Luntala Nsakanda, Aaron & Price, Wilson, 1998. "Efficient solutions to the cell-formation problem with multiple routings via a double-loop genetic algorithm," European Journal of Operational Research, Elsevier, vol. 109(2), pages 286-298, September.
    13. S Lozano & B Adenso-Díaz & I Eguia & L Onieva, 1999. "A one-step tabu search algorithm for manufacturing cell design," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 50(5), pages 509-516, May.
    14. Singh, N., 1993. "Design of cellular manufacturing systems: An invited review," European Journal of Operational Research, Elsevier, vol. 69(3), pages 284-291, September.
    15. Defersha, Fantahun M. & Chen, Mingyuan, 2008. "A linear programming embedded genetic algorithm for an integrated cell formation and lot sizing considering product quality," European Journal of Operational Research, Elsevier, vol. 187(1), pages 46-69, May.
    16. R Logendran & Y Karim, 2003. "Design of manufacturing cells in the presence of alternative cell locations and material transporters," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 54(10), pages 1059-1075, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Manzini, Massimo & Unglert, Johannes & Gyulai, Dávid & Colledani, Marcello & Jauregui-Becker, Juan Manuel & Monostori, László & Urgo, Marcello, 2018. "An integrated framework for design, management and operation of reconfigurable assembly systems," Omega, Elsevier, vol. 78(C), pages 69-84.
    2. Boutsinas, Basilis, 2013. "Machine-part cell formation using biclustering," European Journal of Operational Research, Elsevier, vol. 230(3), pages 563-572.
    3. Berna H. Ulutas, 2019. "An immune system based algorithm for cell formation problem," Journal of Intelligent Manufacturing, Springer, vol. 30(8), pages 2835-2852, December.
    4. Julius Žilinskas & Boris Goldengorin & Panos Pardalos, 2015. "Pareto-optimal front of cell formation problem in group technology," Journal of Global Optimization, Springer, vol. 61(1), pages 91-108, January.
    5. Aidin Delgoshaei & Mohd Khairol Anuar Ariffin & Ahad Ali, 2017. "A multi-period scheduling method for trading-off between skilled-workers allocation and outsource service usage in dynamic CMS," International Journal of Production Research, Taylor & Francis Journals, vol. 55(4), pages 997-1039, February.
    6. Alena Otto & Erwin Pesch, 2017. "Operation of shunting yards: train-to-yard assignment problem," Journal of Business Economics, Springer, vol. 87(4), pages 465-486, May.
    7. Andreas Hottenrott & Martin Grunow, 2019. "Flexible layouts for the mixed-model assembly of heterogeneous vehicles," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 41(4), pages 943-979, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Boutsinas, Basilis, 2013. "Machine-part cell formation using biclustering," European Journal of Operational Research, Elsevier, vol. 230(3), pages 563-572.
    2. Kuldeep Lamba & Ravi Kumar & Shraddha Mishra & Shubhangini Rajput, 2020. "Sustainable dynamic cellular facility layout: a solution approach using simulated annealing-based meta-heuristic," Annals of Operations Research, Springer, vol. 290(1), pages 5-26, July.
    3. A. Attila İşlier, 2015. "Cellular Manufacturing Systems: Organization, Trends and Innovative Methods," Alphanumeric Journal, Bahadir Fatih Yildirim, vol. 3(2), pages 13-26, December.
    4. Nsakanda, Aaron Luntala & Diaby, Moustapha & Price, Wilson L., 2006. "Hybrid genetic approach for solving large-scale capacitated cell formation problems with multiple routings," European Journal of Operational Research, Elsevier, vol. 171(3), pages 1051-1070, June.
    5. R Bhatnagar & V Saddikuti, 2010. "Models for cellular manufacturing systems design: matching processing requirements and operator capabilities," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(5), pages 827-839, May.
    6. Dmitry Krushinsky & Boris Goldengorin, 2012. "An exact model for cell formation in group technology," Computational Management Science, Springer, vol. 9(3), pages 323-338, August.
    7. Nsakanda, Aaron Luntala & Price, Wilson L. & Diaby, Moustapha & Gravel, Marc, 2007. "Ensuring population diversity in genetic algorithms: A technical note with application to the cell formation problem," European Journal of Operational Research, Elsevier, vol. 178(2), pages 634-638, April.
    8. Belarmino Adenso-Díaz & Manuel Laguna, 2006. "Fine-Tuning of Algorithms Using Fractional Experimental Designs and Local Search," Operations Research, INFORMS, vol. 54(1), pages 99-114, February.
    9. Ricardo Soto & Broderick Crawford & Rodrigo Olivares & César Carrasco & Eduardo Rodriguez-Tello & Carlos Castro & Fernando Paredes & Hanns de la Fuente-Mella, 2020. "A Reactive Population Approach on the Dolphin Echolocation Algorithm for Solving Cell Manufacturing Systems," Mathematics, MDPI, vol. 8(9), pages 1-25, August.
    10. Ravi Kumar & Surya Prakash Singh, 2018. "Simulated Annealing-Based Embedded Meta-Heuristic Approach to Solve Bi-objective Robust Stochastic Sustainable Cellular Layout," Global Journal of Flexible Systems Management, Springer;Global Institute of Flexible Systems Management, vol. 19(1), pages 69-93, March.
    11. Ah kioon, Steve & Bulgak, Akif Asil & Bektas, Tolga, 2009. "Integrated cellular manufacturing systems design with production planning and dynamic system reconfiguration," European Journal of Operational Research, Elsevier, vol. 192(2), pages 414-428, January.
    12. Yin, Yong & Yasuda, Kazuhiko, 2006. "Similarity coefficient methods applied to the cell formation problem: A taxonomy and review," International Journal of Production Economics, Elsevier, vol. 101(2), pages 329-352, June.
    13. Noordhoek, Marije & Dullaert, Wout & Lai, David S.W. & de Leeuw, Sander, 2018. "A simulation–optimization approach for a service-constrained multi-echelon distribution network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 114(C), pages 292-311.
    14. Maenhout, Broos & Vanhoucke, Mario, 2010. "A hybrid scatter search heuristic for personalized crew rostering in the airline industry," European Journal of Operational Research, Elsevier, vol. 206(1), pages 155-167, October.
    15. Meyr, H., 2000. "Simultaneous lotsizing and scheduling by combining local search with dual reoptimization," European Journal of Operational Research, Elsevier, vol. 120(2), pages 311-326, January.
    16. Sels, Veronique & Craeymeersch, Kjeld & Vanhoucke, Mario, 2011. "A hybrid single and dual population search procedure for the job shop scheduling problem," European Journal of Operational Research, Elsevier, vol. 215(3), pages 512-523, December.
    17. Ganesan, Viswanath Kumar & Sivakumar, Appa Iyer, 2006. "Scheduling in static jobshops for minimizing mean flowtime subject to minimum total deviation of job completion times," International Journal of Production Economics, Elsevier, vol. 103(2), pages 633-647, October.
    18. Martin Krajčovič & Viktor Hančinský & Ľuboslav Dulina & Patrik Grznár & Martin Gašo & Juraj Vaculík, 2019. "Parameter Setting for a Genetic Algorithm Layout Planner as a Toll of Sustainable Manufacturing," Sustainability, MDPI, vol. 11(7), pages 1-26, April.
    19. Kumar, Akhilesh & Prakash & Tiwari, M.K. & Shankar, Ravi & Baveja, Alok, 2006. "Solving machine-loading problem of a flexible manufacturing system with constraint-based genetic algorithm," European Journal of Operational Research, Elsevier, vol. 175(2), pages 1043-1069, December.
    20. Dahlbeck, Mirko & Fischer, Anja & Fischer, Frank & Hungerländer, Philipp & Maier, Kerstin, 2023. "Exact approaches for the combined cell layout problem," European Journal of Operational Research, Elsevier, vol. 305(2), pages 530-546.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:206:y:2010:i:3:p:509-521. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.