IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v134y2001i1p203-215.html
   My bibliography  Save this article

Greedy solutions of selection and ordering problems

Author

Listed:
  • Alidaee, Bahram
  • Kochenberger, Gary A.
  • Amini, Mohammad M.

Abstract

No abstract is available for this item.

Suggested Citation

  • Alidaee, Bahram & Kochenberger, Gary A. & Amini, Mohammad M., 2001. "Greedy solutions of selection and ordering problems," European Journal of Operational Research, Elsevier, vol. 134(1), pages 203-215, October.
  • Handle: RePEc:eee:ejores:v:134:y:2001:i:1:p:203-215
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377-2217(00)00252-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ari P. J. Vepsalainen & Thomas E. Morton, 1987. "Priority Rules for Job Shops with Weighted Tardiness Costs," Management Science, INFORMS, vol. 33(8), pages 1035-1047, August.
    2. Avi Dechter & Rina Dechter, 1989. "On the Greedy Solution of Ordering Problems," INFORMS Journal on Computing, INFORMS, vol. 1(3), pages 181-189, August.
    3. Panwalkar, S. S. & Smith, M. L. & Koulamas, C. P., 1993. "A heuristic for the single machine tardiness problem," European Journal of Operational Research, Elsevier, vol. 70(3), pages 304-310, November.
    4. Christos Koulamas, 1994. "The Total Tardiness Problem: Review and Extensions," Operations Research, INFORMS, vol. 42(6), pages 1025-1041, December.
    5. Lee, Young Hoon & Pinedo, Michael, 1997. "Scheduling jobs on parallel machines with sequence-dependent setup times," European Journal of Operational Research, Elsevier, vol. 100(3), pages 464-474, August.
    6. Sushil K. Gupta & Jerzy Kyparisis & Chi-Ming Ip, 1992. "Note---Project Selection and Sequencing to Maximize Net Present Value of the Total Return," Management Science, INFORMS, vol. 38(5), pages 751-752, May.
    7. Shailendra Jain & M. Eric Johnson & Fereydoon Safai, 1996. "Implementing Setup Optimization on the Shop Floor," Operations Research, INFORMS, vol. 44(6), pages 843-851, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chow, Joseph Y.J. & Regan, Amelia C. & Ranaiefar, Fatemeh & Arkhipov, Dmitri I., 2011. "A network option portfolio management framework for adaptive transportation planning," Transportation Research Part A: Policy and Practice, Elsevier, vol. 45(8), pages 765-778, October.
    2. Somaye Geramipour & Ghasem Moslehi & Mohammad Reisi-Nafchi, 2017. "Maximizing the profit in customer’s order acceptance and scheduling problem with weighted tardiness penalty," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 68(1), pages 89-101, January.
    3. Chen, Yufeng & Xu, Liyan & Zhang, Xiao & Wang, Zilin & Li, Hailong & Yang, Yansheng & You, Hong & Li, Dihua, 2023. "Socio-econ-ecosystem multipurpose simulator (SEEMS): An easy-to-apply agent-based model for simulating small-scale coupled human and nature systems in biological conservation hotspots," Ecological Modelling, Elsevier, vol. 476(C).
    4. Slotnick, Susan A., 2011. "Order acceptance and scheduling: A taxonomy and review," European Journal of Operational Research, Elsevier, vol. 212(1), pages 1-11, July.
    5. Mestry, Siddharth & Damodaran, Purushothaman & Chen, Chin-Sheng, 2011. "A branch and price solution approach for order acceptance and capacity planning in make-to-order operations," European Journal of Operational Research, Elsevier, vol. 211(3), pages 480-495, June.
    6. Tarhan, İstenç & Oğuz, Ceyda, 2022. "A matheuristic for the generalized order acceptance and scheduling problem," European Journal of Operational Research, Elsevier, vol. 299(1), pages 87-103.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shim, Sang-Oh & Kim, Yeong-Dae, 2007. "Scheduling on parallel identical machines to minimize total tardiness," European Journal of Operational Research, Elsevier, vol. 177(1), pages 135-146, February.
    2. Alidaee, Bahram & Gopalan, Suresh, 1997. "A note on the equivalence of two heuristics to minimize total tardiness," European Journal of Operational Research, Elsevier, vol. 96(3), pages 514-517, February.
    3. Sesh Murthy & Rama Akkiraju & Richard Goodwin & Pinar Keskinocak & John Rachlin & Frederick Wu & James Yeh & Robert Fuhrer & Santhosh Kumaran & Alok Aggarwal & Martin Sturzenbecker & Ranga Jayaraman &, 1999. "Cooperative Multiobjective Decision Support for the Paper Industry," Interfaces, INFORMS, vol. 29(5), pages 5-30, October.
    4. S-O Shim & Y-D Kim, 2007. "Minimizing total tardiness in an unrelated parallel-machine scheduling problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 58(3), pages 346-354, March.
    5. Pinar Keskinocak & Frederick Wu & Richard Goodwin & Sesh Murthy & Rama Akkiraju & Santhosh Kumaran & Annap Derebail, 2002. "Scheduling Solutions for the Paper Industry," Operations Research, INFORMS, vol. 50(2), pages 249-259, April.
    6. Koulamas, Christos, 1996. "Single-machine scheduling with time windows and earliness/tardiness penalties," European Journal of Operational Research, Elsevier, vol. 91(1), pages 190-202, May.
    7. Christos Koulamas, 1997. "Decomposition and hybrid simulated annealing heuristics for the parallel‐machine total tardiness problem," Naval Research Logistics (NRL), John Wiley & Sons, vol. 44(1), pages 109-125, February.
    8. Bilge, Umit & Kurtulan, Mujde & Kirac, Furkan, 2007. "A tabu search algorithm for the single machine total weighted tardiness problem," European Journal of Operational Research, Elsevier, vol. 176(3), pages 1423-1435, February.
    9. Donghun Lee & Hyeongwon Kang & Dongjin Lee & Jeonwoo Lee & Kwanho Kim, 2023. "Deep Reinforcement Learning-Based Scheduler on Parallel Dedicated Machine Scheduling Problem towards Minimizing Total Tardiness," Sustainability, MDPI, vol. 15(4), pages 1-14, February.
    10. Raúl Mencía & Carlos Mencía, 2021. "One-Machine Scheduling with Time-Dependent Capacity via Efficient Memetic Algorithms," Mathematics, MDPI, vol. 9(23), pages 1-24, November.
    11. El-Bouri, Ahmed & Balakrishnan, Subramaniam & Popplewell, Neil, 2000. "Sequencing jobs on a single machine: A neural network approach," European Journal of Operational Research, Elsevier, vol. 126(3), pages 474-490, November.
    12. Xi, Yue & Jang, Jaejin, 2012. "Scheduling jobs on identical parallel machines with unequal future ready time and sequence dependent setup: An experimental study," International Journal of Production Economics, Elsevier, vol. 137(1), pages 1-10.
    13. Söhnke Maecker & Liji Shen, 2020. "Solving parallel machine problems with delivery times and tardiness objectives," Annals of Operations Research, Springer, vol. 285(1), pages 315-334, February.
    14. S H Yoon & I S Lee, 2011. "New constructive heuristics for the total weighted tardiness problem," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 62(1), pages 232-237, January.
    15. Biskup, Dirk & Herrmann, Jan & Gupta, Jatinder N.D., 2008. "Scheduling identical parallel machines to minimize total tardiness," International Journal of Production Economics, Elsevier, vol. 115(1), pages 134-142, September.
    16. Huiqiao Su & Michael Pinedo & Guohua Wan, 2017. "Parallel machine scheduling with eligibility constraints: A composite dispatching rule to minimize total weighted tardiness," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(3), pages 249-267, April.
    17. Armentano, Vinicius Amaral & de Franca Filho, Moacir Felizardo, 2007. "Minimizing total tardiness in parallel machine scheduling with setup times: An adaptive memory-based GRASP approach," European Journal of Operational Research, Elsevier, vol. 183(1), pages 100-114, November.
    18. Koulamas, Christos, 2010. "The single-machine total tardiness scheduling problem: Review and extensions," European Journal of Operational Research, Elsevier, vol. 202(1), pages 1-7, April.
    19. S. David Wu & Eui-Seok Byeon & Robert H. Storer, 1999. "A Graph-Theoretic Decomposition of the Job Shop Scheduling Problem to Achieve Scheduling Robustness," Operations Research, INFORMS, vol. 47(1), pages 113-124, February.
    20. Ullrich, Christian A., 2013. "Integrated machine scheduling and vehicle routing with time windows," European Journal of Operational Research, Elsevier, vol. 227(1), pages 152-165.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:134:y:2001:i:1:p:203-215. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.