IDEAS home Printed from https://ideas.repec.org/a/eee/ecosta/v20y2021icp2-11.html
   My bibliography  Save this article

Kernel-based Volatility Generalised Least Squares

Author

Listed:
  • Chronopoulos, Ilias
  • Kapetanios, George
  • Petrova, Katerina

Abstract

The problem of inference in a standard linear regression model with heteroskedastic errors is investigated. A GLS estimator which is based on a nonparametric kernel estimator is proposed for the volatility process. It is shown that the resulting feasible GLS estimator is T-consistent for a wide range of deterministic and stochastic processes for the time-varying volatility. Moreover, the kernel-GLS estimator is asymptotically more efficient than OLS and hence inference based on its asymptotic distribution is sharper. A Monte Carlo exercise is designed to study the finite sample properties of the proposed estimator and it is shown that tests based on it are correctly-sized for a variety of DGPs. As expected, it is found that in some cases, testing based on OLS is invalid. Crucially, even in cases when tests based on OLS or OLS with heteroskedasticity-consistent (HC) standard errors are correctly-sized, it is found that inference based on the proposed GLS estimator is more powerful even for relatively small sample sizes.

Suggested Citation

  • Chronopoulos, Ilias & Kapetanios, George & Petrova, Katerina, 2021. "Kernel-based Volatility Generalised Least Squares," Econometrics and Statistics, Elsevier, vol. 20(C), pages 2-11.
  • Handle: RePEc:eee:ecosta:v:20:y:2021:i:c:p:2-11
    DOI: 10.1016/j.ecosta.2019.11.001
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S2452306219300644
    Download Restriction: Full text for ScienceDirect subscribers only. Contains open access articles

    File URL: https://libkey.io/10.1016/j.ecosta.2019.11.001?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liudas Giraitis & George Kapetanios & Tony Yates, 2018. "Inference on Multivariate Heteroscedastic Time Varying Random Coefficient Models," Journal of Time Series Analysis, Wiley Blackwell, vol. 39(2), pages 129-149, March.
    2. Hardle, W. & Tsybakov, A., 1997. "Local polynomial estimators of the volatility function in nonparametric autoregression," Journal of Econometrics, Elsevier, vol. 81(1), pages 223-242, November.
    3. Gourieroux, Christian & Monfort, Alain, 1992. "Qualitative threshold ARCH models," Journal of Econometrics, Elsevier, vol. 52(1-2), pages 159-199.
    4. Kauermann G. & Carroll R.J., 2001. "A Note on the Efficiency of Sandwich Covariance Matrix Estimation," Journal of the American Statistical Association, American Statistical Association, vol. 96, pages 1387-1396, December.
    5. White, Halbert, 1980. "A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct Test for Heteroskedasticity," Econometrica, Econometric Society, vol. 48(4), pages 817-838, May.
    6. Chesher, Andrew & Jewitt, Ian, 1987. "The Bias of a Heteroskedasticity Consistent Covariance Matrix Estimator," Econometrica, Econometric Society, vol. 55(5), pages 1217-1222, September.
    7. MacKinnon, James G. & White, Halbert, 1985. "Some heteroskedasticity-consistent covariance matrix estimators with improved finite sample properties," Journal of Econometrics, Elsevier, vol. 29(3), pages 305-325, September.
    8. Giraitis, L. & Kapetanios, G. & Yates, T., 2014. "Inference on stochastic time-varying coefficient models," Journal of Econometrics, Elsevier, vol. 179(1), pages 46-65.
    9. Romano, Joseph P. & Wolf, Michael, 2017. "Resurrecting weighted least squares," Journal of Econometrics, Elsevier, vol. 197(1), pages 1-19.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Richard H. Spady & Sami Stouli, 2018. "Simultaneous Mean-Variance Regression," Bristol Economics Discussion Papers 18/697, School of Economics, University of Bristol, UK.
    2. Pötscher, Benedikt M. & Preinerstorfer, David, 2021. "Valid Heteroskedasticity Robust Testing," MPRA Paper 107420, University Library of Munich, Germany.
    3. Pötscher, Benedikt M. & Preinerstorfer, David, 2023. "How Reliable Are Bootstrap-Based Heteroskedasticity Robust Tests?," Econometric Theory, Cambridge University Press, vol. 39(4), pages 789-847, August.
    4. Romano, Joseph P. & Wolf, Michael, 2017. "Resurrecting weighted least squares," Journal of Econometrics, Elsevier, vol. 197(1), pages 1-19.
    5. Hartigan, Luke, 2018. "Alternative HAC covariance matrix estimators with improved finite sample properties," Computational Statistics & Data Analysis, Elsevier, vol. 119(C), pages 55-73.
    6. Sin, C.Y. (Chor-yiu) & Lee, Cheng-Few, 2021. "Using heteroscedasticity-non-consistent or heteroscedasticity-consistent variances in linear regression," Econometrics and Statistics, Elsevier, vol. 18(C), pages 117-142.
    7. A. Colin Cameron & Jonah B. Gelbach & Douglas L. Miller, 2008. "Bootstrap-Based Improvements for Inference with Clustered Errors," The Review of Economics and Statistics, MIT Press, vol. 90(3), pages 414-427, August.
    8. MacKinnon, J G, 1989. "Heteroskedasticity-Robust Tests for Structural Change," Empirical Economics, Springer, vol. 14(2), pages 77-92.
    9. Goncalves, Silvia & Kilian, Lutz, 2004. "Bootstrapping autoregressions with conditional heteroskedasticity of unknown form," Journal of Econometrics, Elsevier, vol. 123(1), pages 89-120, November.
    10. Davidson, Russell & Flachaire, Emmanuel, 2008. "The wild bootstrap, tamed at last," Journal of Econometrics, Elsevier, vol. 146(1), pages 162-169, September.
    11. Katarzyna Jabłońska, 2018. "Dealing With Heteroskedasticity Within The Modeling Of The Quality Of Life Of Older People," Statistics in Transition New Series, Polish Statistical Association, vol. 19(3), pages 423-452, September.
    12. Cheng, Tsung-Chi, 2012. "On simultaneously identifying outliers and heteroscedasticity without specific form," Computational Statistics & Data Analysis, Elsevier, vol. 56(7), pages 2258-2272.
    13. Emmanuel Flachaire, 2002. "Bootstrapping heteroskedasticity consistent covariance matrix estimator," Computational Statistics, Springer, vol. 17(4), pages 501-506, December.
    14. A. Colin Cameron & Douglas L. Miller, 2010. "Robust Inference with Clustered Data," Working Papers 106, University of California, Davis, Department of Economics.
    15. Francisco Cribari-Neto & Maria da Gloria Lima, 2010. "Approximate inference in heteroskedastic regressions: A numerical evaluation," Journal of Applied Statistics, Taylor & Francis Journals, vol. 37(4), pages 591-615.
    16. Cyrus J. DiCiccio & Joseph P. Romano & Michael Wolf, 2016. "Improving weighted least squares inference," ECON - Working Papers 232, Department of Economics - University of Zurich, revised Nov 2017.
    17. Clifford S. Russell & V. Kerry Smith, 1991. "Demands for Data and Analysis Induced by Environmental Policy," NBER Chapters, in: Fifty Years of Economic Measurement: The Jubilee of the Conference on Research in Income and Wealth, pages 299-342, National Bureau of Economic Research, Inc.
    18. José Murteira & Esmeralda Ramalho & Joaquim Ramalho, 2013. "Heteroskedasticity testing through a comparison of Wald statistics," Portuguese Economic Journal, Springer;Instituto Superior de Economia e Gestao, vol. 12(2), pages 131-160, August.
    19. Kenneth W. Clements & H. Y. Izan & Yihui Lan, 2009. "A Stochastic Measure of International Competitiveness," International Review of Finance, International Review of Finance Ltd., vol. 9(1‐2), pages 51-81, March.
    20. Godfrey, L.G., 2006. "Tests for regression models with heteroskedasticity of unknown form," Computational Statistics & Data Analysis, Elsevier, vol. 50(10), pages 2715-2733, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecosta:v:20:y:2021:i:c:p:2-11. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/econometrics-and-statistics .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.