Advanced Search
MyIDEAS: Login to save this article or follow this journal

A family of empirical likelihood functions and estimators for the binary response model

Contents:

Author Info

  • Mittelhammer, Ron C.
  • Judge, George

Abstract

The minimum discrimination information principle is used to identify an appropriate parametric family of probability distributions and the corresponding maximum likelihood estimators for binary response models. Estimators in the family subsume the conventional logit model and form the basis for a set of parametric estimation alternatives with the usual asymptotic properties. Sampling experiments are used to assess finite sample performance.

Download Info

If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
File URL: http://www.sciencedirect.com/science/article/pii/S0304407611000819
Download Restriction: Full text for ScienceDirect subscribers only

As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

Bibliographic Info

Article provided by Elsevier in its journal Journal of Econometrics.

Volume (Year): 164 (2011)
Issue (Month): 2 (October)
Pages: 207-217

as in new window
Handle: RePEc:eee:econom:v:164:y:2011:i:2:p:207-217

Contact details of provider:
Web page: http://www.elsevier.com/locate/jeconom

Related research

Keywords: Binary response models and estimators Conditional moment equations Cressie-Read family of likelihood functions Information theoretic methods Minimum power divergence Minimum discrimination information;

References

References listed on IDEAS
Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
as in new window
  1. Horowitz, Joel L, 1992. "A Smoothed Maximum Score Estimator for the Binary Response Model," Econometrica, Econometric Society, vol. 60(3), pages 505-31, May.
  2. Briesch R.A. & Chintagunta P.K. & Matzkin R.L., 2002. "Semiparametric Estimation of Brand Choice Behavior," Journal of the American Statistical Association, American Statistical Association, vol. 97, pages 973-982, December.
  3. Teruko Takada, 2001. "Nonparametric density estimation: A comparative study," Economics Bulletin, AccessEcon, vol. 3(16), pages 1-10.
  4. Mittelhammer,Ron C. & Judge,George G. & Miller,Douglas J., 2000. "Econometric Foundations Pack with CD-ROM," Cambridge Books, Cambridge University Press, number 9780521623940.
  5. Train,Kenneth E., 2009. "Discrete Choice Methods with Simulation," Cambridge Books, Cambridge University Press, number 9780521747387.
  6. Gabler, Siegfried & Laisney, Francois & Lechner, Michael, 1993. "Seminonparametric Estimation of Binary-Choice Models with an Application to Labor-Force Participation," Journal of Business & Economic Statistics, American Statistical Association, vol. 11(1), pages 61-80, January.
  7. McFadden, Daniel L., 1984. "Econometric analysis of qualitative response models," Handbook of Econometrics, in: Z. Griliches† & M. D. Intriligator (ed.), Handbook of Econometrics, edition 1, volume 2, chapter 24, pages 1395-1457 Elsevier.
  8. Newey, Whitney K, 1991. "Uniform Convergence in Probability and Stochastic Equicontinuity," Econometrica, Econometric Society, vol. 59(4), pages 1161-67, July.
  9. Klein, Roger W & Spady, Richard H, 1993. "An Efficient Semiparametric Estimator for Binary Response Models," Econometrica, Econometric Society, vol. 61(2), pages 387-421, March.
  10. Cosslett, Stephen R, 1983. "Distribution-Free Maximum Likelihood Estimator of the Binary Choice Model," Econometrica, Econometric Society, vol. 51(3), pages 765-82, May.
  11. Hansen, Lars Peter, 1982. "Large Sample Properties of Generalized Method of Moments Estimators," Econometrica, Econometric Society, vol. 50(4), pages 1029-54, July.
  12. Zellner, Arnold & Rossi, Peter E., 1984. "Bayesian analysis of dichotomous quantal response models," Journal of Econometrics, Elsevier, vol. 25(3), pages 365-393, July.
  13. Pedro Gozalo & Oliver Linton, 1994. "Local Nonlinear Least Squares Estimation: Using Parametric Information Nonparametrically," Cowles Foundation Discussion Papers 1075, Cowles Foundation for Research in Economics, Yale University.
  14. repec:cup:cbooks:9780521496032 is not listed on IDEAS
  15. Pollard, David, 1991. "Asymptotics for Least Absolute Deviation Regression Estimators," Econometric Theory, Cambridge University Press, vol. 7(02), pages 186-199, June.
  16. Manski, Charles F., 1975. "Maximum score estimation of the stochastic utility model of choice," Journal of Econometrics, Elsevier, vol. 3(3), pages 205-228, August.
  17. Han, Aaron K., 1987. "Non-parametric analysis of a generalized regression model : The maximum rank correlation estimator," Journal of Econometrics, Elsevier, vol. 35(2-3), pages 303-316, July.
  18. Gallant, A Ronald & Nychka, Douglas W, 1987. "Semi-nonparametric Maximum Likelihood Estimation," Econometrica, Econometric Society, vol. 55(2), pages 363-90, March.
Full references (including those not matched with items on IDEAS)

Citations

Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
as in new window

Cited by:
  1. Henry-Osorio, Miguel & Mittelhammer, Ronald C., 2012. "An Information-Theoretic Approach to Modeling Binary Choices: Estimating Willingness to Pay for Recreation Site Attributes," 2012 Annual Meeting, August 12-14, 2012, Seattle, Washington 123432, Agricultural and Applied Economics Association.

Lists

This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

Statistics

Access and download statistics

Corrections

When requesting a correction, please mention this item's handle: RePEc:eee:econom:v:164:y:2011:i:2:p:207-217. See general information about how to correct material in RePEc.

For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

If references are entirely missing, you can add them using this form.

If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

Please note that corrections may take a couple of weeks to filter through the various RePEc services.