IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v481y2023ics0304380023000601.html
   My bibliography  Save this article

Emergy ecological footprint analysis of Yaghooti grape production in the Sistan region of Iran

Author

Listed:
  • Fartout Enayat, Fatemeh
  • Ghanbari, Seyed Ahmad
  • Asgharipour, Mohammad Reza
  • Seyedabadi, Esmaeel

Abstract

The Yaghooti grape is the most important garden product in Sistan County, Sistan and Baluchestan Province, Iran, and plays a significant role in the region's economy and way of life. This novel study employs the emergy ecological footprint method to investigate the sustainability of the Yaghooti grape production system. Towards this end, this study employs data collected in 2019 from grape production systems in five cities located in Iran's Sistan region, including Zabol, Zahak, Hamoun, Hirmand, and Nimroz Counties. Using the emergy environmental burden index, this study attempts for the first time to quantify the nonrenewable environmental resources that are lost during the production process. Emergy carrying capacity was calculated to be 3.93E+08 Gha for all grape fields in this study. The emergy ecological footprint in this study was 1.125E+08 Gha. The grape production system in this region has an emergy ecological burden of 0.401 and an emergy ecological footprint intensity of 0.286. As a result of its prominent role in environmental protection, the production system maintains an ecological surplus, does not face significant ecological pressure, and is thus ecologically secure. Despite these positive effects of the production system, 1.35E+09 ha of fertile land is unavailable annually in the Sistan region due to grape production.

Suggested Citation

  • Fartout Enayat, Fatemeh & Ghanbari, Seyed Ahmad & Asgharipour, Mohammad Reza & Seyedabadi, Esmaeel, 2023. "Emergy ecological footprint analysis of Yaghooti grape production in the Sistan region of Iran," Ecological Modelling, Elsevier, vol. 481(C).
  • Handle: RePEc:eee:ecomod:v:481:y:2023:i:c:s0304380023000601
    DOI: 10.1016/j.ecolmodel.2023.110332
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380023000601
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2023.110332?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Brown, Mark T. & Ulgiati, Sergio, 2016. "Emergy assessment of global renewable sources," Ecological Modelling, Elsevier, vol. 339(C), pages 148-156.
    2. Usman, Muhammad & Makhdum, Muhammad Sohail Amjad, 2021. "What abates ecological footprint in BRICS-T region? Exploring the influence of renewable energy, non-renewable energy, agriculture, forest area and financial development," Renewable Energy, Elsevier, vol. 179(C), pages 12-28.
    3. McDonald, Garry W. & Patterson, Murray G., 2004. "Ecological Footprints and interdependencies of New Zealand regions," Ecological Economics, Elsevier, vol. 50(1-2), pages 49-67, September.
    4. Brown, Mark T. & Campbell, Daniel E. & De Vilbiss, Christopher & Ulgiati, Sergio, 2016. "The geobiosphere emergy baseline: A synthesis," Ecological Modelling, Elsevier, vol. 339(C), pages 92-95.
    5. Pata, Ugur Korkut, 2021. "Linking renewable energy, globalization, agriculture, CO2 emissions and ecological footprint in BRIC countries: A sustainability perspective," Renewable Energy, Elsevier, vol. 173(C), pages 197-208.
    6. Asgharipour, Mohammad Reza & Amiri, Zahra & Campbell, Daniel E., 2020. "Evaluation of the sustainability of four greenhouse vegetable production ecosystems based on an analysis of emergy and social characteristics”," Ecological Modelling, Elsevier, vol. 424(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamidreza Shahhoseini & Mahmoud Ramroudi & Hossein Kazemi, 2023. "Emergy analysis for sustainability assessment of potato agroecosystems (case study: Golestan province, Iran)," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 25(7), pages 6393-6418, July.
    2. Eyni-Nargeseh, Hamed & Asgharipour, Mohammad Reza & Rahimi-Moghaddam, Sajjad & Gilani, Abdolali & Damghani, Abdolmajid Mahdavi & Azizi, Khosro, 2023. "Which rice farming system is more environmentally friendly in Khuzestan province, Iran? A study based on emergy analysis," Ecological Modelling, Elsevier, vol. 481(C).
    3. Wang, Xueqi & Liu, Gengyuan & Coscieme, Luca & Giannetti, Biagio F. & Hao, Yan & Zhang, Yan & Brown, Mark T., 2019. "Study on the emergy-based thermodynamic geography of the Jing-Jin-Ji region: Combined multivariate statistical data with DMSP-OLS nighttime lights data," Ecological Modelling, Elsevier, vol. 397(C), pages 1-15.
    4. Stan Selbonne & Loïc Guindé & François Causeret & Pierre Chopin & Jorge Sierra & Régis Tournebize & Jean-Marc Blazy, 2023. "How to Measure the Performance of Farms with Regard to Climate-Smart Agriculture Goals? A Set of Indicators and Its Application in Guadeloupe," Agriculture, MDPI, vol. 13(2), pages 1-21, January.
    5. Cristiano, S. & Ulgiati, S. & Gonella, F., 2021. "Systemic sustainability and resilience assessment of health systems, addressing global societal priorities: Learnings from a top nonprofit hospital in a bioclimatic building in Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    6. Muhammad Ibrahim Shah & Shujaat Abbas & Aminat Olayinka Olohunlana & Avik Sinha, 2023. "The impacts of land use change on biodiversity and ecosystem services: An empirical investigation from highly fragile countries," Sustainable Development, John Wiley & Sons, Ltd., vol. 31(3), pages 1384-1400, June.
    7. Mattei, F. & Buonocore, E. & Franzese, P.P. & Scardi, M., 2021. "Global assessment of marine phytoplankton primary production: Integrating machine learning and environmental accounting models," Ecological Modelling, Elsevier, vol. 451(C).
    8. Yinan Xu & Yingxing Zhao & Peng Sui & Wangsheng Gao & Zhijun Li & Yuanquan Chen, 2021. "Emergy-Based Evaluation on the Systemic Sustainability of Rural Ecosystem under China Poverty Alleviation and Rural Revitalization: A Case of the Village in North China," Energies, MDPI, vol. 14(13), pages 1-16, July.
    9. Mustafa Kamal & Muhammad Usman & Atif Jahanger & Daniel Balsalobre-Lorente, 2021. "Revisiting the Role of Fiscal Policy, Financial Development, and Foreign Direct Investment in Reducing Environmental Pollution during Globalization Mode: Evidence from Linear and Nonlinear Panel Data ," Energies, MDPI, vol. 14(21), pages 1-25, October.
    10. Wang, Chengdong & Wang, Yutao & Tong, Xin & Ulgiati, Sergio & Liang, Sai & Xu, Ming & Wei, Wendong & Li, Xiao & Jin, Mingzhou & Mao, Jiafu, 2020. "Mapping potentials and bridging regional gaps of renewable resources in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    11. Lee, Dong Joo & Brown, Mark T., 2021. "Estimating the Value of Global Ecosystem Structure and Productivity: A Geographic Information System and Emergy Based Approach," Ecological Modelling, Elsevier, vol. 439(C).
    12. Lee, Ying-Chieh & Liao, Pei-Ting, 2021. "The effect of tourism on teleconnected ecosystem services and urban sustainability: An emergy approach," Ecological Modelling, Elsevier, vol. 439(C).
    13. Wang, Chen & Raza, Syed Ali & Adebayo, Tomiwa Sunday & Yi, Sun & Shah, Muhammad Ibrahim, 2023. "The roles of hydro, nuclear and biomass energy towards carbon neutrality target in China: A policy-based analysis," Energy, Elsevier, vol. 262(PA).
    14. Duian Lu & Jie Cheng & Zhenzhou Feng & Li Sun & Wei Mo & Degang Wang, 2022. "Emergy Synthesis of Two Oyster Aquaculture Systems in Zhejiang Province, China," Sustainability, MDPI, vol. 14(21), pages 1-20, October.
    15. Amiri, Zahra & Asgharipour, Mohammad Reza & Moghadam, Esfandiar Hassani & Kakolvand, Ebrahim & Campbell, Daniel E., 2022. "Investigating the need to replace the conventional method of sugar beet production in lorestan province, iran based on the arguments obtained from emergy calculations," Ecological Modelling, Elsevier, vol. 472(C).
    16. Lee, Dong Joo & Choi, Moon Bo, 2020. "Ecological value of global terrestrial plants," Ecological Modelling, Elsevier, vol. 438(C).
    17. Balsalobre-Lorente, Daniel & Contente dos Santos Parente, Clara & Leitão, Nuno Carlos & Cantos-Cantos, José María, 2023. "The influence of economic complexity processes and renewable energy on CO2 emissions of BRICS. What about industry 4.0?," Resources Policy, Elsevier, vol. 82(C).
    18. Miguel Angel Avalos-Rangel & Daniel E. Campbell & Delfino Reyes-López & Rolando Rueda-Luna & Ricardo Munguía-Pérez & Manuel Huerta-Lara, 2021. "The Environmental-Economic Performance of a Poblano Family Milpa System: An Emergy Evaluation," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    19. Patterson, Murray & McDonald, Garry & Hardy, Derrylea, 2017. "Is there more in common than we think? Convergence of ecological footprinting, emergy analysis, life cycle assessment and other methods of environmental accounting," Ecological Modelling, Elsevier, vol. 362(C), pages 19-36.
    20. Daniel Bergquist & Daniela Garcia-Caro & Sofie Joosse & Madeleine Granvik & Felix Peniche, 2020. "The Sustainability of Living in a “Green” Urban District: An Emergy Perspective," Sustainability, MDPI, vol. 12(14), pages 1-20, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:481:y:2023:i:c:s0304380023000601. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.