IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v459y2021ics0304380021002817.html
   My bibliography  Save this article

Exploring the option space for land system futures at regional to global scales: The diagnostic agro-food, land use and greenhouse gas emission model BioBaM-GHG 2.0

Author

Listed:
  • Kalt, Gerald
  • Mayer, Andreas
  • Haberl, Helmut
  • Kaufmann, Lisa
  • Lauk, Christian
  • Matej, Sarah
  • Röös, Elin
  • Theurl, Michaela C.
  • Erb, Karl-Heinz

Abstract

Close to 40% of Earth's land area is used for agriculture to provide humankind with plant- and animal-based food, fibers or bioenergy. Future trends in agricultural land use, livestock husbandry and associated environmental pressures are determined by developments in the food sector, agricultural productivity, technology, and many other influencing factors. Scenario analysis helps to understand their complex interaction and obtain quantitative insight. We here present an in-depth description of the agricultural land use model BioBaM-GHG 2.0 (“BioBaM”), designed for evaluating large numbers of agricultural and livestock production scenarios assembled on the basis of exogenous assumptions on food systems, crop yields and other factors. BioBaM determines the feasibility of specific parameter combinations and the corresponding greenhouse gas (GHG) emissions from agricultural activities, livestock husbandry, land-use change and other activities. We provide a description of the software environment, the model's data structures, input and output variables and model algorithms. To illustrate the model's capabilities and the scope of model applications, we describe two exemplary studies performed with BioBaM: We assess implications of agro-ecological innovations and the feasibility of their widespread application in order to illustrate their implications in terms of agricultural self-sufficiency and GHG emissions. This first case study aligns a small number of individual scenarios with qualitative storylines. We also showcase a ”biophysical option space approach”, which represents a comprehensive sensitivity analysis regarding the multidimensional uncertainties inherent to main influencing parameters, i.e. projections for diets and yields; assumptions on cropland use for bioenergy, and regarding grassland intensification. The global potential of forest regeneration for climate change mitigation serves as an example for this second approach. The option space comprises 90 scenarios and encompasses the full range of literature estimates on GHG mitigation from afforestation in 2050 (0.5 – 7 Gt CO2/yr). It further shows that the potential is zero under certain diet-yield-combinations. Assuming zero energy crop cultivation and global convergence to a healthy reference diet, the sequestration potential of afforestation rises to 10 Gt CO2/yr in 2050. These exemplary applications illustrate how option spaces developed with BioBaM can complement scenario-based assessments that usually focus on small numbers of individual scenarios: Option spaces shift attention to a wider scope of conceivable futures and thus support a comprehensive view on systemic relations and dependencies, whereas analyses with few scenarios allow apprehension of much more detailed scenario narratives and qualifications.

Suggested Citation

  • Kalt, Gerald & Mayer, Andreas & Haberl, Helmut & Kaufmann, Lisa & Lauk, Christian & Matej, Sarah & Röös, Elin & Theurl, Michaela C. & Erb, Karl-Heinz, 2021. "Exploring the option space for land system futures at regional to global scales: The diagnostic agro-food, land use and greenhouse gas emission model BioBaM-GHG 2.0," Ecological Modelling, Elsevier, vol. 459(C).
  • Handle: RePEc:eee:ecomod:v:459:y:2021:i:c:s0304380021002817
    DOI: 10.1016/j.ecolmodel.2021.109729
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380021002817
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2021.109729?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mayer, Andreas & Kaufmann, Lisa & Kalt, Gerald & Matej, Sarah & Theurl, Michaela C. & Morais, Tiago G. & Leip, Adrian & Erb, Karl-Heinz, 2021. "Applying the Human Appropriation of Net Primary Production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union," Ecosystem Services, Elsevier, vol. 51(C).
    2. Wolf, Joost & Kanellopoulos, Argyris & Kros, Johannes & Webber, Heidi & Zhao, Gang & Britz, Wolfgang & Reinds, Gert Jan & Ewert, Frank & de Vries, Wim, 2015. "Combined analysis of climate, technological and price changes on future arable farming systems in Europe," Agricultural Systems, Elsevier, vol. 140(C), pages 56-73.
    3. Stefan Wirsenius, 2003. "The Biomass Metabolism of the Food System: A Model‐Based Survey of the Global and Regional Turnover of Food Biomass," Journal of Industrial Ecology, Yale University, vol. 7(1), pages 47-80, January.
    4. Karl-Heinz Erb & Christian Lauk & Thomas Kastner & Andreas Mayer & Michaela C. Theurl & Helmut Haberl, 2016. "Exploring the biophysical option space for feeding the world without deforestation," Nature Communications, Nature, vol. 7(1), pages 1-9, September.
    5. Evelina Trutnevyte & Céline Guivarch & Robert Lempert & Neil Strachan, 2016. "Reinvigorating the scenario technique to expand uncertainty consideration," Climatic Change, Springer, vol. 135(3), pages 373-379, April.
    6. Ajay Gambhir & Isabela Butnar & Pei-Hao Li & Pete Smith & Neil Strachan, 2019. "A Review of Criticisms of Integrated Assessment Models and Proposed Approaches to Address These, through the Lens of BECCS," Energies, MDPI, vol. 12(9), pages 1-21, May.
    7. Erb, Karl-Heinz & Haberl, Helmut & Plutzar, Christoph, 2012. "Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability," Energy Policy, Elsevier, vol. 47(C), pages 260-269.
    8. Robinson, Sherman & Mason d'Croz, Daniel & Islam, Shahnila & Sulser, Timothy B. & Robertson, Richard D. & Zhu, Tingju & Gueneau, Arthur & Pitois, Gauthier & Rosegrant, Mark W., 2015. "The International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT): Model description for version 3:," IFPRI discussion papers 1483, International Food Policy Research Institute (IFPRI).
    9. Kavallari, Aikaterini & Conforti, Piero & van der Mensbrugghe, Dominique, 2016. "The Global Agriculture Perspectives System (GAPS) Version 1.0," ESA Working Papers 288966, Food and Agriculture Organization of the United Nations, Agricultural Development Economics Division (ESA).
    10. Timothy P Robinson & G R William Wint & Giulia Conchedda & Thomas P Van Boeckel & Valentina Ercoli & Elisa Palamara & Giuseppina Cinardi & Laura D'Aietti & Simon I Hay & Marius Gilbert, 2014. "Mapping the Global Distribution of Livestock," PLOS ONE, Public Library of Science, vol. 9(5), pages 1-13, May.
    11. Bouwman, A.F. & Van der Hoek, K.W. & Eickhout, B. & Soenario, I., 2005. "Exploring changes in world ruminant production systems," Agricultural Systems, Elsevier, vol. 84(2), pages 121-153, May.
    12. Erb, Karl-Heinz & Krausmann, Fridolin & Lucht, Wolfgang & Haberl, Helmut, 2009. "Embodied HANPP: Mapping the spatial disconnect between global biomass production and consumption," Ecological Economics, Elsevier, vol. 69(2), pages 328-334, December.
    13. Janine Pelikan & Wolfgang Britz & Thomas W. Hertel, 2015. "Green Light for Green Agricultural Policies? An Analysis at Regional and Global Scales," Journal of Agricultural Economics, Wiley Blackwell, vol. 66(1), pages 1-19, February.
    14. Petr Havlík & Hugo Valin & Aline Mosnier & Michael Obersteiner & Justin S. Baker & Mario Herrero & Mariana C. Rufino & Erwin Schmid, 2013. "Crop Productivity and the Global Livestock Sector: Implications for Land Use Change and Greenhouse Gas Emissions," American Journal of Agricultural Economics, Agricultural and Applied Economics Association, vol. 95(2), pages 442-448.
    15. Daniel W. O’Neill & Andrew L. Fanning & William F. Lamb & Julia K. Steinberger, 2018. "A good life for all within planetary boundaries," Nature Sustainability, Nature, vol. 1(2), pages 88-95, February.
    16. Krausmann, Fridolin & Erb, Karl-Heinz & Gingrich, Simone & Lauk, Christian & Haberl, Helmut, 2008. "Global patterns of socioeconomic biomass flows in the year 2000: A comprehensive assessment of supply, consumption and constraints," Ecological Economics, Elsevier, vol. 65(3), pages 471-487, April.
    17. Lotze-Campen, Hermann & Popp, Alexander & Beringer, Tim & Müller, Christoph & Bondeau, Alberte & Rost, Stefanie & Lucht, Wolfgang, 2010. "Scenarios of global bioenergy production: The trade-offs between agricultural expansion, intensification and trade," Ecological Modelling, Elsevier, vol. 221(18), pages 2188-2196.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andreas Mayer & Gerald Kalt & Lisa Kaufmann & Elin Röös & Adrian Muller & Rainer Weisshaidinger & Anita Frehner & Nicolas Roux & Pete Smith & Michaela C. Theurl & Sarah Matej & Karlheinz Erb, 2022. "Impacts of Scaling up Agroecology on the Sustainability of European Agriculture in 2050," EuroChoices, The Agricultural Economics Society, vol. 21(3), pages 27-36, December.
    2. Jahel, Camille & Bourgeois, Robin & Bourgoin, Jérémy & Daré, William's & De Lattre-Gasquet, Marie & Delay, Etienne & Dumas, Patrice & Le Page, Christophe & Piraux, Marc & Prudhomme, Rémi, 2023. "The future of social-ecological systems at the crossroads of quantitative and qualitative methods," Technological Forecasting and Social Change, Elsevier, vol. 193(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Haberl, Helmut & Kastner, Thomas & Schaffartzik, Anke & Ludwiczek, Nikolaus & Erb, Karl-Heinz, 2012. "Global effects of national biomass production and consumption: Austria's embodied HANPP related to agricultural biomass in the year 2000," Ecological Economics, Elsevier, vol. 84(C), pages 66-73.
    2. Soto, David & Infante-Amate, Juan & Guzmán, Gloria I. & Cid, Antonio & Aguilera, Eduardo & García, Roberto & González de Molina, Manuel, 2016. "The social metabolism of biomass in Spain, 1900–2008: From food to feed-oriented changes in the agro-ecosystems," Ecological Economics, Elsevier, vol. 128(C), pages 130-138.
    3. Singh, Simron Jit & Krausmann, Fridolin & Gingrich, Simone & Haberl, Helmut & Erb, Karl-Heinz & Lanz, Peter & Martinez-Alier, Joan & Temper, Leah, 2012. "India's biophysical economy, 1961–2008. Sustainability in a national and global context," Ecological Economics, Elsevier, vol. 76(C), pages 60-69.
    4. Batidzirai, B. & Smeets, E.M.W. & Faaij, A.P.C., 2012. "Harmonising bioenergy resource potentials—Methodological lessons from review of state of the art bioenergy potential assessments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(9), pages 6598-6630.
    5. Nikas, A. & Gambhir, A. & Trutnevyte, E. & Koasidis, K. & Lund, H. & Thellufsen, J.Z. & Mayer, D. & Zachmann, G. & Miguel, L.J. & Ferreras-Alonso, N. & Sognnaes, I. & Peters, G.P. & Colombo, E. & Howe, 2021. "Perspective of comprehensive and comprehensible multi-model energy and climate science in Europe," Energy, Elsevier, vol. 215(PA).
    6. Priyanka deSouza & Yadvinder Malhi, 2018. "Land Use Change in India (1700–2000) as Examined through the Lens of Human Appropriation of Net Primary Productivity," Journal of Industrial Ecology, Yale University, vol. 22(5), pages 1202-1212, October.
    7. Thomas W. Hertel & Uris Lantz C. Baldos & Dominique van der Mensbrugghe, 2016. "Predicting Long-Term Food Demand, Cropland Use, and Prices," Annual Review of Resource Economics, Annual Reviews, vol. 8(1), pages 417-441, October.
    8. Skea, Jim & van Diemen, Renée & Portugal-Pereira, Joana & Khourdajie, Alaa Al, 2021. "Outlooks, explorations and normative scenarios: Approaches to global energy futures compared," Technological Forecasting and Social Change, Elsevier, vol. 168(C).
    9. Gavrilova, Olga & Jonas, Matthias & Erb, Karlheinz & Haberl, Helmut, 2010. "International trade and Austria's livestock system: Direct and hidden carbon emission flows associated with production and consumption of products," Ecological Economics, Elsevier, vol. 69(4), pages 920-929, February.
    10. Shupa Rahman & Simron Singh & Cameron McCordic, 2022. "Can the Caribbean localize its food system?: Evidence from biomass flow accounting," Journal of Industrial Ecology, Yale University, vol. 26(3), pages 1025-1039, June.
    11. Peters, Christian J. & Picardy, Jamie A. & Darrouzet-Nardi, Amelia & Griffin, Timothy S., 2014. "Feed conversions, ration compositions, and land use efficiencies of major livestock products in U.S. agricultural systems," Agricultural Systems, Elsevier, vol. 130(C), pages 35-43.
    12. Mahbub, Riasad Bin & Ahmed, Nahian & Rahman, Shupa & Hossain, Mohammad Mosharraf & Sujauddin, Mohammad, 2019. "Human appropriation of net primary production in Bangladesh, 1700–2100," Land Use Policy, Elsevier, vol. 87(C).
    13. Erb, Karl-Heinz & Haberl, Helmut & Plutzar, Christoph, 2012. "Dependency of global primary bioenergy crop potentials in 2050 on food systems, yields, biodiversity conservation and political stability," Energy Policy, Elsevier, vol. 47(C), pages 260-269.
    14. Mayer, Andreas & Kaufmann, Lisa & Kalt, Gerald & Matej, Sarah & Theurl, Michaela C. & Morais, Tiago G. & Leip, Adrian & Erb, Karl-Heinz, 2021. "Applying the Human Appropriation of Net Primary Production framework to map provisioning ecosystem services and their relation to ecosystem functioning across the European Union," Ecosystem Services, Elsevier, vol. 51(C).
    15. Wirsenius, Stefan & Azar, Christian & Berndes, Göran, 2010. "How much land is needed for global food production under scenarios of dietary changes and livestock productivity increases in 2030?," Agricultural Systems, Elsevier, vol. 103(9), pages 621-638, November.
    16. Alexander Urrego-Mesa & Juan Infante-Amate & Enric Tello, 2018. "Pastures and Cash Crops: Biomass Flows in the Socio-Metabolic Transition of Twentieth-Century Colombian Agriculture," Sustainability, MDPI, vol. 11(1), pages 1-28, December.
    17. Vincent Egenolf & Stefan Bringezu, 2019. "Conceptualization of an Indicator System for Assessing the Sustainability of the Bioeconomy," Sustainability, MDPI, vol. 11(2), pages 1-20, January.
    18. Kalt, Gerald & Kaufmann, Lisa & Kastner, Thomas & Krausmann, Fridolin, 2021. "Tracing Austria's biomass consumption to source countries: A product-level comparison between bioenergy, food and material," Ecological Economics, Elsevier, vol. 188(C).
    19. Wang, Xiaoxi & Dietrich, Jan P. & Lotze-Campen, Hermann & Biewald, Anne & Stevanović, Miodrag & Bodirsky, Benjamin L. & Brümmer, Bernhard & Popp, Alexander, 2020. "Beyond land-use intensity: Assessing future global crop productivity growth under different socioeconomic pathways," Technological Forecasting and Social Change, Elsevier, vol. 160(C).
    20. Long, Huiling & Li, Xiaobing & Wang, Hong & Jia, Jingdun, 2013. "Biomass resources and their bioenergy potential estimation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 26(C), pages 344-352.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:459:y:2021:i:c:s0304380021002817. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.