IDEAS home Printed from https://ideas.repec.org/a/eee/ecomod/v313y2015icp201-211.html
   My bibliography  Save this article

Winners and losers of climate change for the genus Merodon (Diptera: Syrphidae) across the Balkan Peninsula

Author

Listed:
  • Kaloveloni, Aggeliki
  • Tscheulin, Thomas
  • Vujić, Ante
  • Radenković, Snežana
  • Petanidou, Theodora

Abstract

The implementation of species distribution models on the research of species response to climate change has increased due to the growing vulnerability and extinction rates of various taxa. Reported declines of pollinator population sizes and diversity due to global changes may negatively affect the services they provide. Considering the importance of hoverflies as pollinators, we predict the climate change effect on the potential distribution range of selected species of the genus Merodon Meigen, 1803. We used two climate models (ECHAM5, HadCM3) and three climate change scenarios (optimistic, modest, pessimistic), under two time frames (2050 and 2080). We predicted the species spatial distribution as well as the species richness and the percentage turnover for two extreme dispersal hypotheses (limited, unlimited). The analysis was implemented using an ensemble forecasting modelling approach. Species adapted to higher altitudes (i.e. with lower temperature requirements) and/or latitudes were predicted to be more vulnerable to climate change vs. species able to tolerate a wider range of temperatures, by losing a higher percentage of climatically suitable area. Significant differences in distribution ranges were found between mountainous and the remaining species groups each one considered separately (viz. climate-generalists, Mediterranean, and east Mediterranean). Southern Balkans were predicted to experience a preservation of species assemblage across all climate change models, scenarios and dispersal assumptions, while the central and northwestern parts were predicted to be subject to an increased change of their species composition. We emphasize the importance of forecasting distribution shifts of a high number of species for the development of conservation strategies. Furthermore, due to the dependence of Merodon fly larvae on geophytes, we highlight the necessity of incorporating biotic interactions to model the potential distribution range shifts of these hoverfly species.

Suggested Citation

  • Kaloveloni, Aggeliki & Tscheulin, Thomas & Vujić, Ante & Radenković, Snežana & Petanidou, Theodora, 2015. "Winners and losers of climate change for the genus Merodon (Diptera: Syrphidae) across the Balkan Peninsula," Ecological Modelling, Elsevier, vol. 313(C), pages 201-211.
  • Handle: RePEc:eee:ecomod:v:313:y:2015:i:c:p:201-211
    DOI: 10.1016/j.ecolmodel.2015.06.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0304380015002811
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ecolmodel.2015.06.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. John Harte & Annette Ostling & Jessica L. Green & Ann Kinzig, 2004. "Climate change and extinction risk," Nature, Nature, vol. 430(6995), pages 34-34, July.
    2. Chris D. Thomas & Alison Cameron & Rhys E. Green & Michel Bakkenes & Linda J. Beaumont & Yvonne C. Collingham & Barend F. N. Erasmus & Marinez Ferreira de Siqueira & Alan Grainger & Lee Hannah & Lesle, 2004. "Extinction risk from climate change," Nature, Nature, vol. 427(6970), pages 145-148, January.
    3. Gallai, Nicola & Salles, Jean-Michel & Settele, Josef & Vaissière, Bernard E., 2009. "Economic valuation of the vulnerability of world agriculture confronted with pollinator decline," Ecological Economics, Elsevier, vol. 68(3), pages 810-821, January.
    4. Giannini, Tereza C. & Acosta, André L. & Garófalo, Carlos A. & Saraiva, Antonio M. & Alves-dos-Santos, Isabel & Imperatriz-Fonseca, Vera L., 2012. "Pollination services at risk: Bee habitats will decrease owing to climate change in Brazil," Ecological Modelling, Elsevier, vol. 244(C), pages 127-131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jorge Velásquez-Tibatá & María H Olaya-Rodríguez & Daniel López-Lozano & César Gutiérrez & Iván González & María C Londoño-Murcia, 2019. "BioModelos: A collaborative online system to map species distributions," PLOS ONE, Public Library of Science, vol. 14(3), pages 1-13, March.
    2. Václavík, Tomáš & Meentemeyer, Ross K., 2009. "Invasive species distribution modeling (iSDM): Are absence data and dispersal constraints needed to predict actual distributions?," Ecological Modelling, Elsevier, vol. 220(23), pages 3248-3258.
    3. Pearce, Joshua M. & Johnson, Sara J. & Grant, Gabriel B., 2007. "3D-mapping optimization of embodied energy of transportation," Resources, Conservation & Recycling, Elsevier, vol. 51(2), pages 435-453.
    4. Henzler, Julia & Weise, Hanna & Enright, Neal J. & Zander, Susanne & Tietjen, Britta, 2018. "A squeeze in the suitable fire interval: Simulating the persistence of fire-killed plants in a Mediterranean-type ecosystem under drier conditions," Ecological Modelling, Elsevier, vol. 389(C), pages 41-49.
    5. Andrew John & Avril Horne & Rory Nathan & Michael Stewardson & J. Angus Webb & Jun Wang & N. LeRoy Poff, 2021. "Climate change and freshwater ecology: Hydrological and ecological methods of comparable complexity are needed to predict risk," Wiley Interdisciplinary Reviews: Climate Change, John Wiley & Sons, vol. 12(2), March.
    6. John H Matthews & Bart AJ Wickel & Sarah Freeman, 2011. "Converging Currents in Climate-Relevant Conservation: Water, Infrastructure, and Institutions," PLOS Biology, Public Library of Science, vol. 9(9), pages 1-4, September.
    7. Brandt, Laura A. & Benscoter, Allison M. & Harvey, Rebecca & Speroterra, Carolina & Bucklin, David & Romañach, Stephanie S. & Watling, James I. & Mazzotti, Frank J., 2017. "Comparison of climate envelope models developed using expert-selected variables versus statistical selection," Ecological Modelling, Elsevier, vol. 345(C), pages 10-20.
    8. Tasmin L. Rymer & Neville Pillay & Carsten Schradin, 2013. "Extinction or Survival? Behavioral Flexibility in Response to Environmental Change in the African Striped Mouse Rhabdomys," Sustainability, MDPI, vol. 5(1), pages 1-24, January.
    9. Feng, Zhiying & Tang, Wenhu & Niu, Zhewen & Wu, Qinghua, 2018. "Bi-level allocation of carbon emission permits based on clustering analysis and weighted voting: A case study in China," Applied Energy, Elsevier, vol. 228(C), pages 1122-1135.
    10. Alexander S Anderson & Collin J Storlie & Luke P Shoo & Richard G Pearson & Stephen E Williams, 2013. "Current Analogues of Future Climate Indicate the Likely Response of a Sensitive Montane Tropical Avifauna to a Warming World," PLOS ONE, Public Library of Science, vol. 8(7), pages 1-12, July.
    11. Di Traglia, Mario & Attorre, Fabio & Francesconi, Fabio & Valenti, Roberto & Vitale, Marcello, 2011. "Is cellular automata algorithm able to predict the future dynamical shifts of tree species in Italy under climate change scenarios? A methodological approach," Ecological Modelling, Elsevier, vol. 222(4), pages 925-934.
    12. Liu, Zhu & Feng, Kuishuang & Hubacek, Klaus & Liang, Sai & Anadon, Laura Diaz & Zhang, Chao & Guan, Dabo, 2015. "Four system boundaries for carbon accounts," Ecological Modelling, Elsevier, vol. 318(C), pages 118-125.
    13. Rougier, Thibaud & Drouineau, Hilaire & Dumoulin, Nicolas & Faure, Thierry & Deffuant, Guillaume & Rochard, Eric & Lambert, Patrick, 2014. "The GR3D model, a tool to explore the Global Repositioning Dynamics of Diadromous fish Distribution," Ecological Modelling, Elsevier, vol. 283(C), pages 31-44.
    14. Verboom, Jana & Alkemade, Rob & Klijn, Jan & Metzger, Marc J. & Reijnen, Rien, 2007. "Combining biodiversity modeling with political and economic development scenarios for 25 EU countries," Ecological Economics, Elsevier, vol. 62(2), pages 267-276, April.
    15. Perez, Carlos & Roncoli, Carla & Neely, Constance & Steiner, Jean L., 2007. "Can carbon sequestration markets benefit low-income producers in semi-arid Africa? Potentials and challenges," Agricultural Systems, Elsevier, vol. 94(1), pages 2-12, April.
    16. Koo, Kyung Ah & Patten, Bernard C. & Teskey, Robert O. & Creed, Irena F., 2014. "Climate change effects on red spruce decline mitigated by reduction in air pollution within its shrinking habitat range," Ecological Modelling, Elsevier, vol. 293(C), pages 81-90.
    17. Andressa Duran & Andreas L S Meyer & Marcio R Pie, 2013. "Climatic Niche Evolution in New World Monkeys (Platyrrhini)," PLOS ONE, Public Library of Science, vol. 8(12), pages 1-6, December.
    18. James I Watling & David N Bucklin & Carolina Speroterra & Laura A Brandt & Frank J Mazzotti & Stephanie S Romañach, 2013. "Validating Predictions from Climate Envelope Models," PLOS ONE, Public Library of Science, vol. 8(5), pages 1-12, May.
    19. Kaushal, Kevin R. & Navrud, Ståle, 2018. "Global Biodiversity Costs of Climate Change. Improving the damage assessment of species loss in Integrated Assessment Models," Working Paper Series 4-2018, Norwegian University of Life Sciences, School of Economics and Business.
    20. Kim Meyer Hall & Heidi J. Albers & Majid Alkaee Taleghan & Thomas G. Dietterich, 2018. "Optimal Spatial-Dynamic Management of Stochastic Species Invasions," Environmental & Resource Economics, Springer;European Association of Environmental and Resource Economists, vol. 70(2), pages 403-427, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ecomod:v:313:y:2015:i:c:p:201-211. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/ecological-modelling .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.