Advanced Search
MyIDEAS: Login to save this article or follow this journal

Modelling small area counts in the presence of overdispersion and spatial autocorrelation

Contents:

Author Info

  • Haining, Robert
  • Law, Jane
  • Griffith, Daniel
Registered author(s):

    Abstract

    The problems arising when modelling counts of rare events observed in small geographical areas when overdispersion and residual spatial autocorrelation are present or anticipated are considered. Different models are presented for handling inference in this case. The different strategies are implemented using data on offender counts at the enumeration district scale for Sheffield, England and results compared. This example is chosen because previous research suggests that social processes and social composition variables are key to understanding geographical variation in offender counts which will, as a consequence, show evidence of clustering both at the scale of the enumeration district and at larger scales. This in turn leads the analyst to anticipate the presence of overdispersion and spatial autocorrelation. Diagnostic measures are described and different modelling strategies are implemented. The evidence suggests that modelling strategies based on the use of spatial random effects models or models that include spatial filters appear to work well and provide a robust basis for model inference but gaps remain in the methodology that call for further research.

    Download Info

    If you experience problems downloading a file, check if you have the proper application to view it first. In case of further problems read the IDEAS help page. Note that these files are not on the IDEAS site. Please be patient as the files may be large.
    File URL: http://www.sciencedirect.com/science/article/B6V8V-4T7XGJY-1/2/f803f7bb8e4166dd6c7ae234c731a12d
    Download Restriction: Full text for ScienceDirect subscribers only.

    As the access to this document is restricted, you may want to look for a different version under "Related research" (further below) or search for a different version of it.

    Bibliographic Info

    Article provided by Elsevier in its journal Computational Statistics & Data Analysis.

    Volume (Year): 53 (2009)
    Issue (Month): 8 (June)
    Pages: 2923-2937

    as in new window
    Handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:2923-2937

    Contact details of provider:
    Web page: http://www.elsevier.com/locate/csda

    Related research

    Keywords:

    References

    References listed on IDEAS
    Please report citation or reference errors to , or , if you are the registered author of the cited work, log in to your RePEc Author Service profile, click on "citations" and make appropriate adjustments.:
    as in new window
    1. Kawachi, Ichiro & Kennedy, Bruce P. & Wilkinson, Richard G., 1999. "Crime: social disorganization and relative deprivation," Social Science & Medicine, Elsevier, vol. 48(6), pages 719-731, March.
    2. Julian Besag & Jeremy York & Annie MolliƩ, 1991. "Bayesian image restoration, with two applications in spatial statistics," Annals of the Institute of Statistical Mathematics, Springer, vol. 43(1), pages 1-20, March.
    3. Griffith, Daniel A., 2002. "A spatial filtering specification for the auto-Poisson model," Statistics & Probability Letters, Elsevier, vol. 58(3), pages 245-251, July.
    4. Michael Tiefelsdorf & Daniel A Griffith, 2007. "Semiparametric filtering of spatial autocorrelation: the eigenvector approach," Environment and Planning A, Pion Ltd, London, vol. 39(5), pages 1193-1221, May.
    5. Daniel A. Griffith, 2004. "Distributional properties of georeferenced random variables based on the eigenfunction spatial filter," Journal of Geographical Systems, Springer, vol. 6(3), pages 263-288, October.
    6. Kaiser, Mark S. & Cressie, Noel, 1997. "Modeling Poisson variables with positive spatial dependence," Statistics & Probability Letters, Elsevier, vol. 35(4), pages 423-432, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as in new window

    Cited by:
    1. Jane Law & Matthew Quick, 2013. "Exploring links between juvenile offenders and social disorganization at a large map scale: a Bayesian spatial modeling approach," Journal of Geographical Systems, Springer, vol. 15(1), pages 89-113, January.

    Lists

    This item is not listed on Wikipedia, on a reading list or among the top items on IDEAS.

    Statistics

    Access and download statistics

    Corrections

    When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:53:y:2009:i:8:p:2923-2937. See general information about how to correct material in RePEc.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: (Zhang, Lei).

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If references are entirely missing, you can add them using this form.

    If the full references list an item that is present in RePEc, but the system did not link to it, you can help with this form.

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your profile, as there may be some citations waiting for confirmation.

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.