IDEAS home Printed from https://ideas.repec.org/a/eee/csdana/v169y2022ics0167947322000111.html
   My bibliography  Save this article

Kernel-based hidden Markov conditional densities

Author

Listed:
  • De Gooijer, Jan G.
  • Henter, Gustav Eje
  • Yuan, Ao

Abstract

A natural way to obtain conditional density estimates for time series processes is to adopt a kernel-based (nonparametric) conditional density estimation (KCDE) method. To this end, the data generating process is commonly assumed to be Markovian of finite order. Markov processes, however, have limited memory range so that only the most recent observations are informative for estimating future observations, assuming the underlying model is known. Hidden Markov models (HMMs), on the other hand, can integrate information over arbitrary lengths of time and thus describe a wider variety of data generating processes. The KCDE and HMMs are combined into one method. The resulting KCDE-HMM method is described in detail, and an iterative algorithm is presented for estimating its transition probabilities, weights and bandwidths. Consistency and asymptotic normality of the resulting conditional density estimator are proved. The conditional forecast ability of the proposed conditional density method is examined and compared via a rolling forecasting window with three benchmark methods: HMM, autoregressive HMM, and KCDE-MM. Large-sample performance of the above conditional estimation methods as a function of training data size is explored. Finally, the methods are applied to the U.S. Industrial Production series and the S&P 500 index. The results indicate that KCDE-HMM outperforms the benchmark methods for moderate-to-large sample sizes, irrespective of the number of hidden states considered.

Suggested Citation

  • De Gooijer, Jan G. & Henter, Gustav Eje & Yuan, Ao, 2022. "Kernel-based hidden Markov conditional densities," Computational Statistics & Data Analysis, Elsevier, vol. 169(C).
  • Handle: RePEc:eee:csdana:v:169:y:2022:i:c:s0167947322000111
    DOI: 10.1016/j.csda.2022.107431
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0167947322000111
    Download Restriction: Full text for ScienceDirect subscribers only.

    File URL: https://libkey.io/10.1016/j.csda.2022.107431?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Raffaella Giacomini & Halbert White, 2006. "Tests of Conditional Predictive Ability," Econometrica, Econometric Society, vol. 74(6), pages 1545-1578, November.
    2. G. Alexandrovich & H. Holzmann & A. Leister, 2016. "Nonparametric identification and maximum likelihood estimation for hidden Markov models," Biometrika, Biometrika Trust, vol. 103(2), pages 423-434.
    3. Diebold, Francis X & Mariano, Roberto S, 2002. "Comparing Predictive Accuracy," Journal of Business & Economic Statistics, American Statistical Association, vol. 20(1), pages 134-144, January.
    4. Jennifer Pohle & Roland Langrock & Floris M. Beest & Niels Martin Schmidt, 2017. "Selecting the Number of States in Hidden Markov Models: Pragmatic Solutions Illustrated Using Animal Movement," Journal of Agricultural, Biological and Environmental Statistics, Springer;The International Biometric Society;American Statistical Association, vol. 22(3), pages 270-293, September.
    5. Tobias Rydén & Timo Teräsvirta & Stefan Åsbrink, 1998. "Stylized facts of daily return series and the hidden Markov model," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 13(3), pages 217-244.
    6. Nguyet Nguyen & Dung Nguyen, 2015. "Hidden Markov Model for Stock Selection," Risks, MDPI, vol. 3(4), pages 1-19, October.
    7. Elliott Robert J. & Siu Tak Kuen & Lau John W., 2018. "A hidden Markov regime-switching smooth transition model," Studies in Nonlinear Dynamics & Econometrics, De Gruyter, vol. 22(4), pages 1-21, September.
    8. Elliott, Robert J. & Siu, Tak Kuen & Badescu, Alex, 2010. "On mean-variance portfolio selection under a hidden Markovian regime-switching model," Economic Modelling, Elsevier, vol. 27(3), pages 678-686, May.
    9. Liu, Hefei & Song, Xinyuan, 2021. "Bayesian analysis of hidden Markov structural equation models with an unknown number of hidden states," Econometrics and Statistics, Elsevier, vol. 18(C), pages 29-43.
    10. Nguyet Nguyen, 2017. "An Analysis and Implementation of the Hidden Markov Model to Technology Stock Prediction," Risks, MDPI, vol. 5(4), pages 1-16, November.
    11. Jan G. De Gooijer & Dawit Zerom, 2003. "On Conditional Density Estimation," Statistica Neerlandica, Netherlands Society for Statistics and Operations Research, vol. 57(2), pages 159-176, May.
    12. Cranwell, R. M. & Weiss, N. A., 1978. "A central limit theorem for mixing stationary point processes," Stochastic Processes and their Applications, Elsevier, vol. 8(2), pages 229-242, December.
    13. Anthony Tay & Kenneth F. Wallis, 2000. "Density Forecasting: A Survey," Econometric Society World Congress 2000 Contributed Papers 0370, Econometric Society.
    14. Fan, Jianqing & Yao, Qiwei & Tong, Howell, 1996. "Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems," LSE Research Online Documents on Economics 6704, London School of Economics and Political Science, LSE Library.
    15. Vikram Krishnamurthy & Tobias Ryden, 1998. "Consistent Estimation of Linear and Non‐linear Autoregressive Models with Markov Regime," Journal of Time Series Analysis, Wiley Blackwell, vol. 19(3), pages 291-307, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anton Gerunov, 2023. "Stock Returns Under Different Market Regimes: An Application of Markov Switching Models to 24 European Indices," Economic Studies journal, Bulgarian Academy of Sciences - Economic Research Institute, issue 1, pages 18-35.
    2. Terasvirta, Timo, 2006. "Forecasting economic variables with nonlinear models," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 1, chapter 8, pages 413-457, Elsevier.
    3. Knut Are Aastveit & Claudia Foroni & Francesco Ravazzolo, 2017. "Density Forecasts With Midas Models," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 32(4), pages 783-801, June.
    4. Luisa Bisaglia & Matteo Grigoletto, 2021. "A new time-varying model for forecasting long-memory series," Statistical Methods & Applications, Springer;Società Italiana di Statistica, vol. 30(1), pages 139-155, March.
    5. Martin, Gael M. & Loaiza-Maya, Rubén & Maneesoonthorn, Worapree & Frazier, David T. & Ramírez-Hassan, Andrés, 2022. "Optimal probabilistic forecasts: When do they work?," International Journal of Forecasting, Elsevier, vol. 38(1), pages 384-406.
    6. Hecq, A.W. & Götz, T.B. & Urbain, J.R.Y.J., 2012. "Real-time forecast density combinations (forecasting US GDP growth using mixed-frequency data)," Research Memorandum 021, Maastricht University, Maastricht Research School of Economics of Technology and Organization (METEOR).
    7. repec:wyi:journl:002081 is not listed on IDEAS
    8. Petropoulos, Fotios & Apiletti, Daniele & Assimakopoulos, Vassilios & Babai, Mohamed Zied & Barrow, Devon K. & Ben Taieb, Souhaib & Bergmeir, Christoph & Bessa, Ricardo J. & Bijak, Jakub & Boylan, Joh, 2022. "Forecasting: theory and practice," International Journal of Forecasting, Elsevier, vol. 38(3), pages 705-871.
      • Fotios Petropoulos & Daniele Apiletti & Vassilios Assimakopoulos & Mohamed Zied Babai & Devon K. Barrow & Souhaib Ben Taieb & Christoph Bergmeir & Ricardo J. Bessa & Jakub Bijak & John E. Boylan & Jet, 2020. "Forecasting: theory and practice," Papers 2012.03854, arXiv.org, revised Jan 2022.
    9. Hong, Yongmiao & Li, Haitao & Zhao, Feng, 2007. "Can the random walk model be beaten in out-of-sample density forecasts? Evidence from intraday foreign exchange rates," Journal of Econometrics, Elsevier, vol. 141(2), pages 736-776, December.
    10. Giorgio Valente & Lucio Sarno, 2005. "Modelling and forecasting stock returns: exploiting the futures market, regime shifts and international spillovers," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(3), pages 345-376.
    11. Luisa Bisaglia & Matteo Grigoletto, 2018. "A new time-varying model for forecasting long-memory series," Papers 1812.07295, arXiv.org.
    12. Yongmiao Hong & Haitao Li & Feng Zhao, 2013. "Can the Random Walk Model be Beaten in Out-of-Sample Density Forecasts? Evidence from Intraday Forei," Working Papers 2013-10-14, Wang Yanan Institute for Studies in Economics (WISE), Xiamen University.
    13. João C. Claudio & Katja Heinisch & Oliver Holtemöller, 2020. "Nowcasting East German GDP growth: a MIDAS approach," Empirical Economics, Springer, vol. 58(1), pages 29-54, January.
    14. Cavit Pakel & Neil Shephard & Kevin Sheppard, 2009. "Nuisance parameters, composite likelihoods and a panel of GARCH models," Economics Papers 2009-W12, Economics Group, Nuffield College, University of Oxford.
    15. Christophe Chorro & Florian Ielpo & Benoît Sévi, 2017. "The contribution of jumps to forecasting the density of returns," Post-Print halshs-01442618, HAL.
    16. Xilong Chen & Eric Ghysels, 2011. "News--Good or Bad--and Its Impact on Volatility Predictions over Multiple Horizons," The Review of Financial Studies, Society for Financial Studies, vol. 24(1), pages 46-81, October.
    17. Cavit Pakel & Neil Shephard & Kevin Sheppard & Robert F. Engle, 2021. "Fitting Vast Dimensional Time-Varying Covariance Models," Journal of Business & Economic Statistics, Taylor & Francis Journals, vol. 39(3), pages 652-668, July.
    18. Daniel Buncic, 2012. "Understanding forecast failure of ESTAR models of real exchange rates," Empirical Economics, Springer, vol. 43(1), pages 399-426, August.
    19. Scott Brave & R. Andrew Butters & Alejandro Justiniano, 2016. "Forecasting Economic Activity with Mixed Frequency Bayesian VARs," Working Paper Series WP-2016-5, Federal Reserve Bank of Chicago.
    20. Dimitrakopoulos, Stefanos & Tsionas, Mike, 2019. "Ordinal-response GARCH models for transaction data: A forecasting exercise," International Journal of Forecasting, Elsevier, vol. 35(4), pages 1273-1287.
    21. Norman R. Swanson & Weiqi Xiong, 2018. "Big data analytics in economics: What have we learned so far, and where should we go from here?," Canadian Journal of Economics/Revue canadienne d'économique, John Wiley & Sons, vol. 51(3), pages 695-746, August.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:csdana:v:169:y:2022:i:c:s0167947322000111. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/csda .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.