IDEAS home Printed from https://ideas.repec.org/a/eee/chsofr/v136y2020ics0960077920302307.html
   My bibliography  Save this article

Ring of map-based neural oscillators: From order to chaos and back

Author

Listed:
  • Bashkirtseva, Irina A.
  • Ryashko, Lev B.
  • Pisarchik, Alexander N.

Abstract

We study transitions from regular to chaotic dynamics and back of a ring of three map-based neurons with parameter mismatch. First, we consider the case when each neuron being isolated is in a stable equilibrium and show that an increase in the coupling strength can lead to chaotic dynamics following a quasiperiodic behavior. Then, we consider the case when the uncoupled neurons are in a chaotic state and demonstrate the route from chaos to periodicity as the coupling strength is increased. We show that this interesting effect results from lag synchronization of the coupled neural oscillators. The system stability is characterized by the largest Lyapunov exponents in the space of the coupling strength and parameter mismatch, while lag synchronization is measured using the similarity function.

Suggested Citation

  • Bashkirtseva, Irina A. & Ryashko, Lev B. & Pisarchik, Alexander N., 2020. "Ring of map-based neural oscillators: From order to chaos and back," Chaos, Solitons & Fractals, Elsevier, vol. 136(C).
  • Handle: RePEc:eee:chsofr:v:136:y:2020:i:c:s0960077920302307
    DOI: 10.1016/j.chaos.2020.109830
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960077920302307
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.chaos.2020.109830?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spagnolo, B. & Valenti, D. & Guarcello, C. & Carollo, A. & Persano Adorno, D. & Spezia, S. & Pizzolato, N. & Di Paola, B., 2015. "Noise-induced effects in nonlinear relaxation of condensed matter systems," Chaos, Solitons & Fractals, Elsevier, vol. 81(PB), pages 412-424.
    2. Andreev, Andrey V. & Makarov, Vladimir V. & Runnova, Anastasija E. & Pisarchik, Alexander N. & Hramov, Alexander E., 2018. "Coherence resonance in stimulated neuronal network," Chaos, Solitons & Fractals, Elsevier, vol. 106(C), pages 80-85.
    3. Simón Sosvilla-Rivero & Fernando Fernández-Rodriguez & Julián Andrada-Félix, 2005. "Testing chaotic dynamics via Lyapunov exponents," Journal of Applied Econometrics, John Wiley & Sons, Ltd., vol. 20(7), pages 911-930.
    4. Pavlov, A.N. & Pavlova, O.N. & Koronovskii, A.A. & Hramov, A.E., 2018. "Effect of measuring noise on scaling characteristics in the dynamics of coupled chaotic systems," Chaos, Solitons & Fractals, Elsevier, vol. 116(C), pages 106-113.
    5. Alberto Mazzoni & Frédéric D Broccard & Elizabeth Garcia-Perez & Paolo Bonifazi & Maria Elisabetta Ruaro & Vincent Torre, 2007. "On the Dynamics of the Spontaneous Activity in Neuronal Networks," PLOS ONE, Public Library of Science, vol. 2(5), pages 1-12, May.
    6. Copelli, M. & Tragtenberg, M.H.R. & Kinouchi, O., 2004. "Stability diagrams for bursting neurons modeled by three-variable maps," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 342(1), pages 263-269.
    7. Bashkirtseva, Irina & Nasyrova, Venera & Ryashko, Lev, 2018. "Noise-induced bursting and chaos in the two-dimensional Rulkov model," Chaos, Solitons & Fractals, Elsevier, vol. 110(C), pages 76-81.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Slepukhina, Evdokiia & Bashkirtseva, Irina & Ryashko, Lev & Kügler, Philipp, 2022. "Stochastic mixed-mode oscillations in the canards region of a cardiac action potential model," Chaos, Solitons & Fractals, Elsevier, vol. 164(C).
    2. Slepukhina, Evdokia & Bashkirtseva, Irina & Ryashko, Lev, 2020. "Stochastic spiking-bursting transitions in a neural birhythmic 3D model with the Lukyanov-Shilnikov bifurcation," Chaos, Solitons & Fractals, Elsevier, vol. 138(C).
    3. Bashkirtseva, I. & Ryashko, L., 2019. "Stochastic sensitivity analysis of chaotic attractors in 2D non-invertible maps," Chaos, Solitons & Fractals, Elsevier, vol. 126(C), pages 78-84.
    4. Park, Joon Y. & Whang, Yoon-Jae, 2012. "Random walk or chaos: A formal test on the Lyapunov exponent," Journal of Econometrics, Elsevier, vol. 169(1), pages 61-74.
    5. Jin, Yanfei & Wang, Heqiang, 2020. "Noise-induced dynamics in a Josephson junction driven by trichotomous noises," Chaos, Solitons & Fractals, Elsevier, vol. 133(C).
    6. Bask, Mikael, 2010. "Measuring potential market risk," Journal of Financial Stability, Elsevier, vol. 6(3), pages 180-186, September.
    7. Belaire-Franch, Jorge, 2018. "Exchange rates expectations and chaotic dynamics: A replication study," Economics - The Open-Access, Open-Assessment E-Journal (2007-2020), Kiel Institute for the World Economy (IfW Kiel), vol. 12, pages 1-9.
    8. Shi, Zhuozheng & Liao, Zhiqiang & Tabata, Hitoshi, 2022. "Boosting learning ability of overdamped bistable stochastic resonance system based physical reservoir computing model by time-delayed feedback," Chaos, Solitons & Fractals, Elsevier, vol. 161(C).
    9. Piedjou Komnang, A.S. & Guarcello, C. & Barone, C. & Gatti, C. & Pagano, S. & Pierro, V. & Rettaroli, A. & Filatrella, G., 2021. "Analysis of Josephson junctions switching time distributions for the detection of single microwave photons," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    10. Bashkirtseva, Irina & Ryashko, Lev, 2022. "Stochastic generation and shifts of phantom attractors in the 2D Rulkov model," Chaos, Solitons & Fractals, Elsevier, vol. 159(C).
    11. Yablokov, A.A. & Glushkov, E.I. & Pankratov, A.L. & Gordeeva, A.V. & Kuzmin, L.S. & Il’ichev, E.V., 2021. "Resonant response drives sensitivity of Josephson escape detector," Chaos, Solitons & Fractals, Elsevier, vol. 148(C).
    12. Fang, Yuwen & Luo, Yuhui & Ma, Zhiqing & Zeng, Chunhua, 2021. "Transport and diffusion in the Schweitzer–Ebeling–Tilch model driven by cross-correlated noises," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 564(C).
    13. Matilla-García, Mariano & Marín, Manuel Ruiz, 2010. "A new test for chaos and determinism based on symbolic dynamics," Journal of Economic Behavior & Organization, Elsevier, vol. 76(3), pages 600-614, December.
    14. Matilla-Garcia, Mariano, 2007. "A non-parametric test for independence based on symbolic dynamics," Journal of Economic Dynamics and Control, Elsevier, vol. 31(12), pages 3889-3903, December.
    15. dos Santos, Maike A.F. & Junior, Luiz Menon, 2021. "Random diffusivity models for scaled Brownian motion," Chaos, Solitons & Fractals, Elsevier, vol. 144(C).
    16. Li, Jun-Feng & Jahanshahi, Hadi & Kacar, Sezgin & Chu, Yu-Ming & Gómez-Aguilar, J.F. & Alotaibi, Naif D. & Alharbi, Khalid H., 2021. "On the variable-order fractional memristor oscillator: Data security applications and synchronization using a type-2 fuzzy disturbance observer-based robust control," Chaos, Solitons & Fractals, Elsevier, vol. 145(C).
    17. Bashkirtseva, Irina & Ryashko, Lev, 2023. "Transformations of spike and burst oscillations in the stochastic Rulkov model," Chaos, Solitons & Fractals, Elsevier, vol. 170(C).
    18. Andreeva, N.V. & Turalchuk, P.A. & Chigirev, D.A. & Vendik, I.B. & Ryndin, E.A. & Luchinin, V.V., 2021. "Electron impact processes in voltage-controlled phase transition in vanadium dioxide thin films," Chaos, Solitons & Fractals, Elsevier, vol. 142(C).
    19. Bask, Mikael & Widerberg, Anna, 2009. "Market structure and the stability and volatility of electricity prices," Energy Economics, Elsevier, vol. 31(2), pages 278-288, March.
    20. Bershadskii, A. & Ikegaya, Y., 2011. "Chaotic neuron clock," Chaos, Solitons & Fractals, Elsevier, vol. 44(4), pages 342-347.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:chsofr:v:136:y:2020:i:c:s0960077920302307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Thayer, Thomas R. (email available below). General contact details of provider: https://www.journals.elsevier.com/chaos-solitons-and-fractals .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.