IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v87y2010i4p1239-1246.html
   My bibliography  Save this article

Characterization of knocking combustion in HCCI DME engine using wavelet packet transform

Author

Listed:
  • Hou, Junxing
  • Qiao, Xinqi
  • Wang, Zhen
  • Liu, Wei
  • Huang, Zhen

Abstract

A diesel engine is modified for homogeneous charge compression ignition (HCCI) combustion with dimethyl ether. With and without knock, in-cylinder pressure is acquired, and in-cylinder temperature, rate of heat release (ROHR), pressure rise rate and pressure rise acceleration obtained. Wavelet packet transform is performed to decompose pressure signal into three layers with subsignals obtained. Three wavelet packet quantifiers for seven subsignals, including mean absolute value of coefficients, wavelet packet energy and entropy, are compared. The three quantifiers are correlated with maximum pressure rise rate and pressure rise acceleration, respectively. The analysis shows that the in-cylinder pressure, temperature and ROHR change smoothly in normal combustion. When combustion gets into knock, they have a steep rise and a strong fluctuation; the ROHR peaks increase for both cool flame and hot flame, and heat release advances, especially for hot flame. The pressure rise rate and pressure rise acceleration fluctuate more violently, and their maximums increase remarkably and advance somewhat. Without knock, mean absolute value of coefficients, wavelet packet energy and entropy for the subsignal 1 are much greater than others. As knock occurs, three wavelet packet quantifiers for seven subsignals increase greatly, and for the subsignal 6 becomes the largest. Wavelet packet quantifiers for seven subsignals should be monitored for knock detection. The correlation coefficient similarly increases first, decreases afterwards and increases again through seven subsignals. Among three wavelet packet quantifiers, mean absolute value of coefficients has the maximum correlation coefficient except for the subsignal 6. Its maximum correlation coefficient appears at subsignal 7, whose frequency band is 8.75-10Â kHz.

Suggested Citation

  • Hou, Junxing & Qiao, Xinqi & Wang, Zhen & Liu, Wei & Huang, Zhen, 2010. "Characterization of knocking combustion in HCCI DME engine using wavelet packet transform," Applied Energy, Elsevier, vol. 87(4), pages 1239-1246, April.
  • Handle: RePEc:eee:appene:v:87:y:2010:i:4:p:1239-1246
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(09)00251-7
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Machrafi, Hatim & Cavadias, Simeon & Amouroux, Jacques, 2008. "A parametric study on the emissions from an HCCI alternative combustion engine resulting from the auto-ignition of primary reference fuels," Applied Energy, Elsevier, vol. 85(8), pages 755-764, August.
    2. Komninos, N.P., 2009. "Modeling HCCI combustion: Modification of a multi-zone model and comparison to experimental results at varying boost pressure," Applied Energy, Elsevier, vol. 86(10), pages 2141-2151, October.
    3. Komninos, N.P., 2009. "Investigating the importance of mass transfer on the formation of HCCI engine emissions using a multi-zone model," Applied Energy, Elsevier, vol. 86(7-8), pages 1335-1343, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wu, Horng-Wen & Wang, Ren-Hung & Ou, Dung-Je & Chen, Ying-Chuan & Chen, Teng-yu, 2011. "Reduction of smoke and nitrogen oxides of a partial HCCI engine using premixed gasoline and ethanol with air," Applied Energy, Elsevier, vol. 88(11), pages 3882-3890.
    2. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2011. "Experimental investigation on the effect of intake air temperature and air-fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters," Applied Energy, Elsevier, vol. 88(4), pages 1153-1163, April.
    3. Sen, A.K. & Litak, G. & Edwards, K.D. & Finney, C.E.A. & Daw, C.S. & Wagner, R.M., 2011. "Characteristics of cyclic heat release variability in the transition from spark ignition to HCCI in a gasoline engine," Applied Energy, Elsevier, vol. 88(5), pages 1649-1655, May.
    4. Hairuddin, A. Aziz & Yusaf, Talal & Wandel, Andrew P., 2014. "A review of hydrogen and natural gas addition in diesel HCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 739-761.
    5. Qian, Yong & Li, Hua & Han, Dong & Ji, Libin & Huang, Zhen & Lu, Xingcai, 2016. "Octane rating effects of direct injection fuels on dual fuel HCCI-DI stratified combustion mode with port injection of n-heptane," Energy, Elsevier, vol. 111(C), pages 1003-1016.
    6. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
    7. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2011. "Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine," Applied Energy, Elsevier, vol. 88(4), pages 1169-1180, April.
    8. Xu Zheng & Nan Zhou & Quan Zhou & Yi Qiu & Ruijun Liu & Zhiyong Hao, 2020. "Experimental Investigation on the High-frequency Pressure Oscillation Characteristics of a Combustion Process in a DI Diesel Engine," Energies, MDPI, vol. 13(4), pages 1-25, February.
    9. Kang, Yinhu & Wang, Quanhai & Lu, Xiaofeng & Wan, Hu & Ji, Xuanyu & Wang, Hu & Guo, Qiang & Yan, Jin & Zhou, Jinliang, 2015. "Experimental and numerical study on NOx and CO emission characteristics of dimethyl ether/air jet diffusion flame," Applied Energy, Elsevier, vol. 149(C), pages 204-224.
    10. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    11. Gan, Suyin & Ng, Hoon Kiat & Pang, Kar Mun, 2011. "Homogeneous Charge Compression Ignition (HCCI) combustion: Implementation and effects on pollutants in direct injection diesel engines," Applied Energy, Elsevier, vol. 88(3), pages 559-567, March.
    12. Zhang, Qinghui & Hao, Zhiyong & Zheng, Xu & Yang, Wenying, 2017. "Characteristics and effect factors of pressure oscillation in multi-injection DI diesel engine at high-load conditions," Applied Energy, Elsevier, vol. 195(C), pages 52-66.
    13. Sen, Asok K. & Zheng, Jianjun & Huang, Zuohua, 2011. "Dynamics of cycle-to-cycle variations in a natural gas direct-injection spark-ignition engine," Applied Energy, Elsevier, vol. 88(7), pages 2324-2334, July.
    14. Najjar, Yousef S.H., 2011. "Comparison of performance of a Greener direct-injection stratified-charge (DISC) engine with a spark-ignition engine using a simplified model," Energy, Elsevier, vol. 36(7), pages 4136-4143.
    15. Sun, Chunhua & Liu, Yu & Qiao, Xinqi & Ju, Dehao & Tang, Qing & Fang, Xiaoyuan & Zhou, Feng, 2020. "Experimental study of effects of exhaust gas recirculation on combustion, performance, and emissions of DME-biodiesel fueled engine," Energy, Elsevier, vol. 197(C).
    16. Gharehghani, Ayat & Abbasi, Hamid Reza & Alizadeh, Pouria, 2021. "Application of machine learning tools for constrained multi-objective optimization of an HCCI engine," Energy, Elsevier, vol. 233(C).
    17. Komninos, N.P. & Kosmadakis, G.M., 2011. "Heat transfer in HCCI multi-zone modeling: Validation of a new wall heat flux correlation under motoring conditions," Applied Energy, Elsevier, vol. 88(5), pages 1635-1648, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gan, Suyin & Ng, Hoon Kiat & Pang, Kar Mun, 2011. "Homogeneous Charge Compression Ignition (HCCI) combustion: Implementation and effects on pollutants in direct injection diesel engines," Applied Energy, Elsevier, vol. 88(3), pages 559-567, March.
    2. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2011. "Experimental investigation on the effect of intake air temperature and air-fuel ratio on cycle-to-cycle variations of HCCI combustion and performance parameters," Applied Energy, Elsevier, vol. 88(4), pages 1153-1163, April.
    3. Wu, Horng-Wen & Wang, Ren-Hung & Ou, Dung-Je & Chen, Ying-Chuan & Chen, Teng-yu, 2011. "Reduction of smoke and nitrogen oxides of a partial HCCI engine using premixed gasoline and ethanol with air," Applied Energy, Elsevier, vol. 88(11), pages 3882-3890.
    4. Komninos, N.P. & Kosmadakis, G.M., 2011. "Heat transfer in HCCI multi-zone modeling: Validation of a new wall heat flux correlation under motoring conditions," Applied Energy, Elsevier, vol. 88(5), pages 1635-1648, May.
    5. Ghazimirsaied, Ahmad & Koch, Charles Robert, 2012. "Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine," Applied Energy, Elsevier, vol. 92(C), pages 133-146.
    6. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2011. "Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine," Applied Energy, Elsevier, vol. 88(4), pages 1169-1180, April.
    7. Krishna, Addepalli S. & Mallikarjuna, J.M. & Kumar, Davinder, 2016. "Effect of engine parameters on in-cylinder flows in a two-stroke gasoline direct injection engine," Applied Energy, Elsevier, vol. 176(C), pages 282-294.
    8. Komninos, N.P. & Rakopoulos, C.D., 2016. "Heat transfer in hcci phenomenological simulation models: A review," Applied Energy, Elsevier, vol. 181(C), pages 179-209.
    9. Rakopoulos, C.D. & Kosmadakis, G.M. & Dimaratos, A.M. & Pariotis, E.G., 2011. "Investigating the effect of crevice flow on internal combustion engines using a new simple crevice model implemented in a CFD code," Applied Energy, Elsevier, vol. 88(1), pages 111-126, January.
    10. Liang, Chen & Ji, Changwei & Liu, Xiaolong, 2011. "Combustion and emissions performance of a DME-enriched spark-ignited methanol engine at idle condition," Applied Energy, Elsevier, vol. 88(11), pages 3704-3711.
    11. Hairuddin, A. Aziz & Yusaf, Talal & Wandel, Andrew P., 2014. "A review of hydrogen and natural gas addition in diesel HCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 739-761.
    12. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    13. Benajes, J. & Novella, R. & De Lima, D. & Thein, K., 2017. "Impact of injection settings operating with the gasoline Partially Premixed Combustion concept in a 2-stroke HSDI compression ignition engine," Applied Energy, Elsevier, vol. 193(C), pages 515-530.
    14. Zhang, Y. & Zhao, H., 2014. "Investigation of combustion, performance and emission characteristics of 2-stroke and 4-stroke spark ignition and CAI/HCCI operations in a DI gasoline," Applied Energy, Elsevier, vol. 130(C), pages 244-255.
    15. Navarro, Emilio & Leo, Teresa J. & Corral, Roberto, 2013. "CO2 emissions from a spark ignition engine operating on natural gas–hydrogen blends (HCNG)," Applied Energy, Elsevier, vol. 101(C), pages 112-120.
    16. Komninos, N.P. & Rakopoulos, C.D., 2012. "Modeling HCCI combustion of biofuels: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1588-1610.
    17. Saravanan, N. & Nagarajan, G., 2010. "Performance and emission studies on port injection of hydrogen with varied flow rates with Diesel as an ignition source," Applied Energy, Elsevier, vol. 87(7), pages 2218-2229, July.
    18. Mohamed Ismail, Harun & Ng, Hoon Kiat & Gan, Suyin, 2012. "Evaluation of non-premixed combustion and fuel spray models for in-cylinder diesel engine simulation," Applied Energy, Elsevier, vol. 90(1), pages 271-279.
    19. Rakopoulos, C.D. & Kosmadakis, G.M. & Pariotis, E.G., 2010. "Critical evaluation of current heat transfer models used in CFD in-cylinder engine simulations and establishment of a comprehensive wall-function formulation," Applied Energy, Elsevier, vol. 87(5), pages 1612-1630, May.
    20. Nihal Mishra & Shubham Mitra & Abhishek Thapliyal & Aniket Mahajan & T. M. Yunus Khan & Sreekanth Manavalla & Rahmath Ulla Baig & Ayub Ahmed Janvekar & Feroskhan M, 2023. "Exploring the Effects of DEE Pilot Injection on a Biogas-Fueled HCCI Engine at Different Injection Locations," Sustainability, MDPI, vol. 15(13), pages 1-17, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:87:y:2010:i:4:p:1239-1246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.