IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v111y2016icp1003-1016.html
   My bibliography  Save this article

Octane rating effects of direct injection fuels on dual fuel HCCI-DI stratified combustion mode with port injection of n-heptane

Author

Listed:
  • Qian, Yong
  • Li, Hua
  • Han, Dong
  • Ji, Libin
  • Huang, Zhen
  • Lu, Xingcai

Abstract

Experimental study on dual fuel HCCI-DI stratified combustion mode is investigated with port injection of n-heptane and direct injection of primary reference fuels (PRFs) with different octane numbers from 0 to 100. Firstly, in-cylinder stratifications of mixture concentration, composition, and temperature for this HCCI-DI combustion mode were numerically simulated. The effects of the octane number of the DI fuel, the overall equivalence ratio and the premixed fuel fraction by port injection on the combustion, emissions and performance characteristics are studied. Further, the premixed fuel fraction in this dual fuel HCCI-DI stratified combustion mode is optimized based on the octane rating of the DI fuels. It was found that at lower premixed ratio of HCCI-DI combustion, dual-fuel sequential combustion was observed when high octane number fuels were used as directly injected fuel. And the ignition of the direct injected fuels was mainly determined by the active radicals or thermal energy-active radical. At large premixed ratio, the ignition of direct injected fuels was determined by the thermal-atmosphere but almost not influenced by partial equivalence ratio of DI fuels and their octane number.

Suggested Citation

  • Qian, Yong & Li, Hua & Han, Dong & Ji, Libin & Huang, Zhen & Lu, Xingcai, 2016. "Octane rating effects of direct injection fuels on dual fuel HCCI-DI stratified combustion mode with port injection of n-heptane," Energy, Elsevier, vol. 111(C), pages 1003-1016.
  • Handle: RePEc:eee:energy:v:111:y:2016:i:c:p:1003-1016
    DOI: 10.1016/j.energy.2016.06.044
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216308180
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.06.044?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lu, Xingcai & Qian, Yong & Yang, Zheng & Han, Dong & Ji, Jibin & Zhou, Xiaoxin & Huang, Zhen, 2014. "Experimental study on compound HCCI (homogenous charge compression ignition) combustion fueled with gasoline and diesel blends," Energy, Elsevier, vol. 64(C), pages 707-718.
    2. Amjad, A.K. & Khoshbakhi Saray, R. & Mahmoudi, S.M.S. & Rahimi, A., 2011. "Availability analysis of n-heptane and natural gas blends combustion in HCCI engines," Energy, Elsevier, vol. 36(12), pages 6900-6909.
    3. Lee, Kyeonghyeon & Cho, Seokwon & Kim, Namho & Min, Kyoungdoug, 2015. "A study on combustion control and operating range expansion of gasoline HCCI," Energy, Elsevier, vol. 91(C), pages 1038-1048.
    4. Liu, Mao-Bin & He, Bang-Quan & Zhao, Hua, 2015. "Effect of air dilution and effective compression ratio on the combustion characteristics of a HCCI (homogeneous charge compression ignition) engine fuelled with n-butanol," Energy, Elsevier, vol. 85(C), pages 296-303.
    5. Lu, Xingcai & Zhou, Xiaoxin & Ji, Libin & Yang, Zheng & Han, Dong & Huang, Chen & Huang, Zhen, 2013. "Experimental studies on the dual-fuel sequential combustion and emission simulation," Energy, Elsevier, vol. 51(C), pages 358-373.
    6. Paykani, Amin & Kakaee, Amir-Hasan & Rahnama, Pourya & Reitz, Rolf D., 2015. "Effects of diesel injection strategy on natural gas/diesel reactivity controlled compression ignition combustion," Energy, Elsevier, vol. 90(P1), pages 814-826.
    7. Neshat, Elaheh & Saray, Rahim Khoshbakhti, 2014. "Development of a new multi zone model for prediction of HCCI (homogenous charge compression ignition) engine combustion, performance and emission characteristics," Energy, Elsevier, vol. 73(C), pages 325-339.
    8. Hou, Junxing & Qiao, Xinqi & Wang, Zhen & Liu, Wei & Huang, Zhen, 2010. "Characterization of knocking combustion in HCCI DME engine using wavelet packet transform," Applied Energy, Elsevier, vol. 87(4), pages 1239-1246, April.
    9. Zhu, Lifeng & Qian, Yong & Wang, Xiaole & Lu, Xingcai, 2015. "Effects of direct injection timing and premixed ratio on combustion and emissions characteristics of RCCI (Reactivity Controlled Compression Ignition) with N-heptane/gasoline-like fuels," Energy, Elsevier, vol. 93(P1), pages 383-392.
    10. Benajes, Jesús & Molina, Santiago & García, Antonio & Monsalve-Serrano, Javier, 2015. "Effects of low reactivity fuel characteristics and blending ratio on low load RCCI (reactivity controlled compression ignition) performance and emissions in a heavy-duty diesel engine," Energy, Elsevier, vol. 90(P2), pages 1261-1271.
    11. Li, Yaopeng & Jia, Ming & Chang, Yachao & Liu, Yaodong & Xie, Maozhao & Wang, Tianyou & Zhou, Lei, 2014. "Parametric study and optimization of a RCCI (reactivity controlled compression ignition) engine fueled with methanol and diesel," Energy, Elsevier, vol. 65(C), pages 319-332.
    12. Qian, Yong & Wang, Xiaole & Zhu, Lifeng & Lu, Xingcai, 2015. "Experimental studies on combustion and emissions of RCCI (reactivity controlled compression ignition) with gasoline/n-heptane and ethanol/n-heptane as fuels," Energy, Elsevier, vol. 88(C), pages 584-594.
    13. Torres García, Miguel & José Jiménez-Espadafor Aguilar, Francisco & Sánchez Lencero, Tomás, 2009. "Experimental study of the performances of a modified diesel engine operating in homogeneous charge compression ignition (HCCI) combustion mode versus the original diesel combustion mode," Energy, Elsevier, vol. 34(2), pages 159-171.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wei Tian & Hongchuan Zhang & Lenian Wang & Zhiqiang Han & Wenbin Yu, 2020. "Effect of Premixed n-Butanol Ratio on the Initial Stage of Combustion in a Light-Duty Butanol/Diesel Dual-Fuel Engine," Energies, MDPI, vol. 13(17), pages 1-10, August.
    2. Sahebjamei, M. & Amani, E. & Nobari, M.R.H., 2019. "Numerical analysis of radial and angular stratification in turbulent swirling flames," Energy, Elsevier, vol. 173(C), pages 523-539.
    3. Zhou, Ao & Zhang, Chunhua & Li, Yangyang & Li, Songfeng & Yin, Peng, 2019. "Effect of hydrogen peroxide additive on the combustion and emission characteristics of an n-butanol homogeneous charge compression ignition engine," Energy, Elsevier, vol. 169(C), pages 572-579.
    4. Li, Yaopeng & Li, Hua & Pang, Bin & Liu, Fei & Jia, Ming & Long, Wuqiang & Tian, Jiangping & Guo, Lijun, 2023. "Co-optimization of injection parameters and injector layouts for a methanol/diesel direct dual-fuel stratification (DDFS) engine," Energy, Elsevier, vol. 284(C).
    5. Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
    6. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Han, Dong & Zhai, Jiaqi & Duan, Yaozong & Wang, Chunhai & Huang, Zhen, 2018. "Nozzle effects on the injection characteristics of diesel and gasoline blends on a common rail system," Energy, Elsevier, vol. 153(C), pages 223-230.
    8. Qian, Yong & Yu, Liang & Li, Zilong & Zhang, Yahui & Xu, Leilei & Zhou, Qiyan & Han, Dong & Lu, Xingcai, 2018. "A new methodology for diesel surrogate fuel formulation: Bridging fuel fundamental properties and real engine combustion characteristics," Energy, Elsevier, vol. 148(C), pages 424-447.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pachiannan, Tamilselvan & Zhong, Wenjun & Rajkumar, Sundararajan & He, Zhixia & Leng, Xianying & Wang, Qian, 2019. "A literature review of fuel effects on performance and emission characteristics of low-temperature combustion strategies," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    2. Han, Weiqiang & Li, Bolun & Pan, Suozhu & Lu, Yao & Li, Xin, 2018. "Combined effect of inlet pressure, total cycle energy, and start of injection on low load reactivity controlled compression ignition combustion and emission characteristics in a multi-cylinder heavy-d," Energy, Elsevier, vol. 165(PB), pages 846-858.
    3. Huang, Yuhan & Hong, Guang & Huang, Ronghua, 2016. "Effect of injection timing on mixture formation and combustion in an ethanol direct injection plus gasoline port injection (EDI+GPI) engine," Energy, Elsevier, vol. 111(C), pages 92-103.
    4. Zhang, Chao & Zhang, Chunhua & Xue, Le & Li, Yangyang, 2017. "Combustion characteristics and operation range of a RCCI combustion engine fueled with direct injection n-heptane and pipe injection n-butanol," Energy, Elsevier, vol. 125(C), pages 439-448.
    5. Bahri, Bahram & Shahbakhti, Mahdi & Aziz, Azhar Abdul, 2017. "Real-time modeling of ringing in HCCI engines using artificial neural networks," Energy, Elsevier, vol. 125(C), pages 509-518.
    6. Firmansyah & A. Rashid A. Aziz & Morgan Raymond Heikal & Ezrann Z. Zainal A., 2017. "Diesel/CNG Mixture Autoignition Control Using Fuel Composition and Injection Gap," Energies, MDPI, vol. 10(10), pages 1-12, October.
    7. Li, Zilong & Zhang, Yaoyuan & Huang, Guan & Zhao, Wenbin & He, Zhuoyao & Qian, Yong & Lu, Xingcai, 2020. "Control of intake boundary conditions for enabling clean combustion in variable engine conditions under intelligent charge compression ignition (ICCI) mode," Applied Energy, Elsevier, vol. 274(C).
    8. Zhang, Yanzhi & Li, Zilong & Tamilselvan, Pachiannan & Jiang, Chenxu & He, Zhixia & Zhong, Wenjun & Qian, Yong & Wang, Qian & Lu, Xingcai, 2019. "Experimental study of combustion and emission characteristics of gasoline compression ignition (GCI) engines fueled by gasoline-hydrogenated catalytic biodiesel blends," Energy, Elsevier, vol. 187(C).
    9. Zhong, Yingzi & Han, Weiqiang & Jin, Chao & Tian, Xiaocong & Liu, Haifeng, 2022. "Study on effects of the hydroxyl group position and carbon chain length on combustion and emission characteristics of Reactivity Controlled Compression Ignition (RCCI) engine fueled with low-carbon st," Energy, Elsevier, vol. 239(PC).
    10. Neshat, Elaheh & Saray, Rahim Khoshbakhti, 2014. "Development of a new multi zone model for prediction of HCCI (homogenous charge compression ignition) engine combustion, performance and emission characteristics," Energy, Elsevier, vol. 73(C), pages 325-339.
    11. Xu, Leilei & Bai, Xue-Song & Li, Changle & Tunestål, Per & Tunér, Martin & Lu, Xingcai, 2019. "Combustion characteristics of gasoline DICI engine in the transition from HCCI to PPC: Experiment and numerical analysis," Energy, Elsevier, vol. 185(C), pages 922-937.
    12. Pan, Suozhu & Cai, Kai & Cai, Min & Du, Chenbo & Li, Xin & Han, Weiqiang & Wang, Xin & Liu, Daming & Wei, Jiangjun & Fang, Jia & Bao, Xiuchao, 2021. "Experimental study on the cyclic variations of ethanol/diesel reactivity controlled compression ignition (RCCI) combustion in a heavy-duty diesel engine," Energy, Elsevier, vol. 237(C).
    13. Najjar, Yousef S.H., 2011. "Comparison of performance of a Greener direct-injection stratified-charge (DISC) engine with a spark-ignition engine using a simplified model," Energy, Elsevier, vol. 36(7), pages 4136-4143.
    14. Shu, Jun & Fu, Jianqin & Liu, Jingping & Ma, Yinjie & Wang, Shuqian & Deng, Banglin & Zeng, Dongjian, 2019. "Effects of injector spray angle on combustion and emissions characteristics of a natural gas (NG)-diesel dual fuel engine based on CFD coupled with reduced chemical kinetic model," Applied Energy, Elsevier, vol. 233, pages 182-195.
    15. Hairuddin, A. Aziz & Yusaf, Talal & Wandel, Andrew P., 2014. "A review of hydrogen and natural gas addition in diesel HCCI engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 739-761.
    16. Jiaqiang, E & Zhao, Xiaohuan & Xie, Longfu & Zhang, Bin & Chen, Jingwei & Zuo, Qingsong & Han, Dandan & Hu, Wenyu & Zhang, Zhiqing, 2019. "Performance enhancement of microwave assisted regeneration in a wall-flow diesel particulate filter based on field synergy theory," Energy, Elsevier, vol. 169(C), pages 719-729.
    17. Liu, Haifeng & Ma, Guixiang & Hu, Bin & Zheng, Zunqing & Yao, Mingfa, 2018. "Effects of port injection of hydrous ethanol on combustion and emission characteristics in dual-fuel reactivity controlled compression ignition (RCCI) mode," Energy, Elsevier, vol. 145(C), pages 592-602.
    18. Komninos, N.P. & Rakopoulos, C.D., 2016. "Heat transfer in hcci phenomenological simulation models: A review," Applied Energy, Elsevier, vol. 181(C), pages 179-209.
    19. Ansari, Ehsan & Shahbakhti, Mahdi & Naber, Jeffrey, 2018. "Optimization of performance and operational cost for a dual mode diesel-natural gas RCCI and diesel combustion engine," Applied Energy, Elsevier, vol. 231(C), pages 549-561.
    20. Qian, Yong & Yu, Liang & Li, Zilong & Zhang, Yahui & Xu, Leilei & Zhou, Qiyan & Han, Dong & Lu, Xingcai, 2018. "A new methodology for diesel surrogate fuel formulation: Bridging fuel fundamental properties and real engine combustion characteristics," Energy, Elsevier, vol. 148(C), pages 424-447.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:111:y:2016:i:c:p:1003-1016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.