IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v83y2006i2p113-132.html
   My bibliography  Save this article

Optimum sizing of an autonomous wind-diesel hybrid system for various representative wind-potential cases

Author

Listed:
  • Kaldellis, J.K.
  • Vlachos, G.Th.

Abstract

Official statistics estimate that almost two billion people worldwide have no direct access to electrical networks. Afar from decision centers and having limited political influence, isolated consumers are often abandoned, facing a dramatically insufficient infrastructure situation. In this context, a wind-diesel-battery hybrid system is one of the best alternative solutions to meet the electricity demand of numerous remote consumers, with rational first installation and operational cost, even at medium wind-potential areas. The basic idea of this effort, in comparison with previous works rejecting oil usage, is to use the minimum possible diesel-oil quantity and limit the battery bank dimensions. For the prediction of the optimum hybrid system configuration, an integrated numerical algorithm is developed, based on experimental measurements and operational characteristics by the hybrid system components manufacturers. During the calculations, a detailed energy-balance analysis is carried out for the entire time period examined, while the battery depth of discharge time evolution is also investigated. The developed model is successfully applied for three representative wind potential types. The results obtained are quite encouraging supporting the applicability of the proposed solution.

Suggested Citation

  • Kaldellis, J.K. & Vlachos, G.Th., 2006. "Optimum sizing of an autonomous wind-diesel hybrid system for various representative wind-potential cases," Applied Energy, Elsevier, vol. 83(2), pages 113-132, February.
  • Handle: RePEc:eee:appene:v:83:y:2006:i:2:p:113-132
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(05)00007-3
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kaldellis, J. K., 2002. "Optimum autonomous wind-power system sizing for remote consumers, using long-term wind speed data," Applied Energy, Elsevier, vol. 71(3), pages 215-233, March.
    2. Kaldellis, J. K., 2004. "Parametric investigation concerning dimensions of a stand-alone wind-power system," Applied Energy, Elsevier, vol. 77(1), pages 35-50, January.
    3. Bowen, A.J & Cowie, M & Zakay, N, 2001. "The performance of a remote wind–diesel power system," Renewable Energy, Elsevier, vol. 22(4), pages 429-445.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Perera, A.T.D. & Attalage, R.A. & Perera, K.K.C.K. & Dassanayake, V.P.C., 2013. "Designing standalone hybrid energy systems minimizing initial investment, life cycle cost and pollutant emission," Energy, Elsevier, vol. 54(C), pages 220-230.
    2. Abdin, Z. & Webb, C.J. & Gray, E.MacA., 2015. "Solar hydrogen hybrid energy systems for off-grid electricity supply: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1791-1808.
    3. Giannoulis, E.D. & Haralambopoulos, D.A., 2011. "Distributed Generation in an isolated grid: Methodology of case study for Lesvos - Greece," Applied Energy, Elsevier, vol. 88(7), pages 2530-2540, July.
    4. Zafirakis, D. & Chalvatzis, K. & Kaldellis, J.K., 2013. "“Socially just” support mechanisms for the promotion of renewable energy sources in Greece," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 478-493.
    5. Xydis, G. & Koroneos, C. & Loizidou, M., 2009. "Exergy analysis in a wind speed prognostic model as a wind farm sitting selection tool: A case study in Southern Greece," Applied Energy, Elsevier, vol. 86(11), pages 2411-2420, November.
    6. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    7. Lee, Sangkeum & Cho, Hong-Yeon & Har, Dongsoo, 2018. "Operation optimization with jointly controlled modules powered by hybrid energy source: A case study of desalination," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3070-3080.
    8. Meng, Fanyi & Bai, Yang & Jin, Jingliang, 2021. "An advanced real-time dispatching strategy for a distributed energy system based on the reinforcement learning algorithm," Renewable Energy, Elsevier, vol. 178(C), pages 13-24.
    9. Kaldellis, J.K. & Meidanis, E. & Zafirakis, D., 2011. "Experimental energy analysis of a stand-alone photovoltaic-based water pumping installation," Applied Energy, Elsevier, vol. 88(12), pages 4556-4562.
    10. Bekele, Getachew & Palm, Björn, 2010. "Feasibility study for a standalone solar-wind-based hybrid energy system for application in Ethiopia," Applied Energy, Elsevier, vol. 87(2), pages 487-495, February.
    11. Kaldellis, J.K. & Kondili, E. & Filios, A., 2006. "Sizing a hybrid wind-diesel stand-alone system on the basis of minimum long-term electricity production cost," Applied Energy, Elsevier, vol. 83(12), pages 1384-1403, December.
    12. Mohamed, Mohamed A. & Eltamaly, Ali M. & Alolah, Abdulrahman I., 2017. "Swarm intelligence-based optimization of grid-dependent hybrid renewable energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 515-524.
    13. Fang, Jianhao & Hu, Weifei & Liu, Zhenyu & Chen, Weiyi & Tan, Jianrong & Jiang, Zhiyu & Verma, Amrit Shankar, 2022. "Wind turbine rotor speed design optimization considering rain erosion based on deep reinforcement learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    14. Zghal, Wissem & Kantchev, Gueorgui & Kchaou, Hédi, 2011. "Optimization and management of the energy produced by a wind energizing system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1080-1088, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kaldellis, J.K. & Kondili, E. & Filios, A., 2006. "Sizing a hybrid wind-diesel stand-alone system on the basis of minimum long-term electricity production cost," Applied Energy, Elsevier, vol. 83(12), pages 1384-1403, December.
    2. Pavković, D. & Hoić, M. & Deur, J. & Petrić, J., 2014. "Energy storage systems sizing study for a high-altitude wind energy application," Energy, Elsevier, vol. 76(C), pages 91-103.
    3. Ye, Lin & Zhang, Cihang & Xue, Hui & Li, Jiachen & Lu, Peng & Zhao, Yongning, 2019. "Study of assessment on capability of wind power accommodation in regional power grids," Renewable Energy, Elsevier, vol. 133(C), pages 647-662.
    4. Fyrippis, Ioannis & Axaopoulos, Petros J. & Panayiotou, Gregoris, 2010. "Wind energy potential assessment in Naxos Island, Greece," Applied Energy, Elsevier, vol. 87(2), pages 577-586, February.
    5. Krumdieck, Susan & Hamm, Andreas, 2009. "Strategic analysis methodology for energy systems with remote island case study," Energy Policy, Elsevier, vol. 37(9), pages 3301-3313, September.
    6. Kaldellis, J.K. & Kavadias, K.A. & Filios, A.E., 2009. "A new computational algorithm for the calculation of maximum wind energy penetration in autonomous electrical generation systems," Applied Energy, Elsevier, vol. 86(7-8), pages 1011-1023, July.
    7. Kaldellis, J.K. & Meidanis, E. & Zafirakis, D., 2011. "Experimental energy analysis of a stand-alone photovoltaic-based water pumping installation," Applied Energy, Elsevier, vol. 88(12), pages 4556-4562.
    8. Ibrahim, H. & Younès, R. & Basbous, T. & Ilinca, A. & Dimitrova, M., 2011. "Optimization of diesel engine performances for a hybrid wind–diesel system with compressed air energy storage," Energy, Elsevier, vol. 36(5), pages 3079-3091.
    9. Celik, A.N., 2006. "A simplified model for estimating yearly wind fraction in hybrid-wind energy systems," Renewable Energy, Elsevier, vol. 31(1), pages 105-118.
    10. Kaldellis, John & Kavadias, Kosmas & Zafirakis, Dimitrios, 2012. "Experimental validation of the optimum photovoltaic panels' tilt angle for remote consumers," Renewable Energy, Elsevier, vol. 46(C), pages 179-191.
    11. Bowen, A.J & Zakay, N & Ives, R.L, 2003. "The field performance of a remote 10 kW wind turbine," Renewable Energy, Elsevier, vol. 28(1), pages 13-33.
    12. Kougias, Ioannis & Szabó, Sándor & Nikitas, Alexandros & Theodossiou, Nicolaos, 2019. "Sustainable energy modelling of non-interconnected Mediterranean islands," Renewable Energy, Elsevier, vol. 133(C), pages 930-940.
    13. Kaldellis, J.K. & Zafirakis, D. & Kavadias, K., 2012. "Minimum cost solution of wind–photovoltaic based stand-alone power systems for remote consumers," Energy Policy, Elsevier, vol. 42(C), pages 105-117.
    14. Ucar, Aynur & Balo, Figen, 2009. "Evaluation of wind energy potential and electricity generation at six locations in Turkey," Applied Energy, Elsevier, vol. 86(10), pages 1864-1872, October.
    15. Sakka, Evelyn G. & Bilionis, Dimitrios V. & Vamvatsikos, Dimitrios & Gantes, Charis J., 2020. "Onshore wind farm siting prioritization based on investment profitability for Greece," Renewable Energy, Elsevier, vol. 146(C), pages 2827-2839.
    16. Roy, Anindita & Kedare, Shireesh B. & Bandyopadhyay, Santanu, 2010. "Optimum sizing of wind-battery systems incorporating resource uncertainty," Applied Energy, Elsevier, vol. 87(8), pages 2712-2727, August.
    17. Juntunen, Jouni K. & Martiskainen, Mari, 2021. "Improving understanding of energy autonomy: A systematic review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    18. Zafirakis, D. & Kaldellis, J.K., 2009. "Economic evaluation of the dual mode CAES solution for increased wind energy contribution in autonomous island networks," Energy Policy, Elsevier, vol. 37(5), pages 1958-1969, May.
    19. Pedrazzi, Simone & Zini, Gabriele & Tartarini, Paolo, 2012. "Modelling and simulation of a wind-hydrogen CHP system with metal hydride storage," Renewable Energy, Elsevier, vol. 46(C), pages 14-22.
    20. Kaldellis, John & Zafirakis, Dimitrios & Kavadias, Kosmas & Kondili, Emilia, 2012. "Optimum PV-diesel hybrid systems for remote consumers of the Greek territory," Applied Energy, Elsevier, vol. 97(C), pages 61-67.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:83:y:2006:i:2:p:113-132. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.