IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v65y2000i1-4p273-284.html
   My bibliography  Save this article

Characterisation of photovoltaic generators

Author

Listed:
  • Durisch, Wilhelm
  • Tille, Dierk
  • Wörz, A.
  • Plapp, Waltraud

Abstract

Reliable knowledge on the performance of different photovoltaic generators (as single cells, modules, laminates, shingles, car roofs, etc.) under actual operating conditions is essential for correct product selection and accurate prediction of their electricity production. For this purpose, an outdoor test facility was erected at the Paul Scherrer Institute, PSI. It consists of a sun-tracked sample holder, electronic loads and a PC-based measuring system. Insolation is measured with pyranometers, pyrheliometers and reference cells. Characterisation of a generator under given test conditions means the precise acquisition of its electrical behaviour under varying load. The generator's efficiency and all the relevant electrical parameters are derived on-line from a series of measured current/voltage (I/V) values. I/V-scans at constant insolation and at different generator temperatures enable the temperature coefficients of the efficiency and the electrical parameters to be determined. Thereafter I/V-scans at different insolations (10-1200 W/m2) and air masses (1.1-5) yield (via temperature correction) the insolation dependence of the efficiency at constant temperature. A complete scan takes about 5-15 s. Samples of size varying from 1 by 1 mm up to 1.5 by 1 m can be tested at currents up to 32 A and at voltages up to 120 V. For modelling purposes, the results are represented in the form of correlations, e.g. the efficiency as a function of the operating parameters temperature, insolation and air mass. Results obtained in PSI's test facility were confirmed by the Fraunhofer-Insitut für Solare Energiesysteme, D-79100 Freiburg, Germany. Measurements are presented from some modules and single cells as well as some efficiency correlations. Results are also presented on lamination losses, on PSI's high efficiency cell, on Grätzel cells and watch modules as well as on shading effects and of a small thermophotovoltaic generator.

Suggested Citation

  • Durisch, Wilhelm & Tille, Dierk & Wörz, A. & Plapp, Waltraud, 2000. "Characterisation of photovoltaic generators," Applied Energy, Elsevier, vol. 65(1-4), pages 273-284, April.
  • Handle: RePEc:eee:appene:v:65:y:2000:i:1-4:p:273-284
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(99)00115-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Durisch, Wilhelm & Keller, Johannes & Bulgheroni, Willy & Keller, Lothar & Fricker, Hans, 1995. "Solar irradiation measurements in Jordan and comparisons with Californian and Alpine data," Applied Energy, Elsevier, vol. 52(2-3), pages 111-124.
    2. Durisch, W. & Urban, J. & Smestad, G., 1996. "Characterisation of solar cells and modules under actual operating conditions," Renewable Energy, Elsevier, vol. 8(1), pages 359-366.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Jiangjiang & Lu, Yanchao & Yang, Ying & Mao, Tianzhi, 2016. "Thermodynamic performance analysis and optimization of a solar-assisted combined cooling, heating and power system," Energy, Elsevier, vol. 115(P1), pages 49-59.
    2. Li, Danny H.W. & Lam, Tony N.T. & Chan, Wilco W.H. & Mak, Ada H.L., 2009. "Energy and cost analysis of semi-transparent photovoltaic in office buildings," Applied Energy, Elsevier, vol. 86(5), pages 722-729, May.
    3. Khan, Firoz & Baek, Seong-Ho & Kim, Jae Hyun, 2014. "Intensity dependency of photovoltaic cell parameters under high illumination conditions: An analysis," Applied Energy, Elsevier, vol. 133(C), pages 356-362.
    4. Durisch, W. & Bitnar, B. & Mayor, J. -C. & von Roth, Fritz & Sigg, H. & Tschudi, H. R. & Palfinger, G., 2003. "Small self-powered grid-connected thermophotovoltaic prototype system," Applied Energy, Elsevier, vol. 74(1-2), pages 149-157, January.
    5. Li, Danny H.W. & Cheung, K.L. & Lam, Tony N.T. & Chan, Wilco W.H., 2012. "A study of grid-connected photovoltaic (PV) system in Hong Kong," Applied Energy, Elsevier, vol. 90(1), pages 122-127.
    6. Bühler, Alexandre J. & Perin Gasparin, Fabiano & Krenzinger, Arno, 2014. "Post-processing data of measured I–V curves of photovoltaic devices," Renewable Energy, Elsevier, vol. 68(C), pages 602-610.
    7. Zhang, Peng & Li, Wenyuan & Li, Sherwin & Wang, Yang & Xiao, Weidong, 2013. "Reliability assessment of photovoltaic power systems: Review of current status and future perspectives," Applied Energy, Elsevier, vol. 104(C), pages 822-833.
    8. Cuce, Erdem & Cuce, Pinar Mert & Bali, Tulin, 2013. "An experimental analysis of illumination intensity and temperature dependency of photovoltaic cell parameters," Applied Energy, Elsevier, vol. 111(C), pages 374-382.
    9. Roy, Sanjoy, 2015. "Statistical estimates of short duration power generated by a photovoltaic unit in environment of scattered cloud cover," Energy, Elsevier, vol. 89(C), pages 14-23.
    10. Wang, Jiangjiang & Yang, Ying & Mao, Tianzhi & Sui, Jun & Jin, Hongguang, 2015. "Life cycle assessment (LCA) optimization of solar-assisted hybrid CCHP system," Applied Energy, Elsevier, vol. 146(C), pages 38-52.
    11. Zhu, Weiyu & Xu, Yuanming & Du, Huafei & Zhang, Lanchuan & Li, Jun, 2018. "Transmittance optimization of solar array encapsulant for high-altitude airship," Renewable Energy, Elsevier, vol. 125(C), pages 796-805.
    12. Celik, A.N., 2003. "Long-term energy output estimation for photovoltaic energy systems using synthetic solar irradiation data," Energy, Elsevier, vol. 28(5), pages 479-493.
    13. Liu, Yang & Du, Huafei & Xu, Ziyuan & Sun, Kangwen & Lv, Mingyun, 2022. "Mission-based optimization of insulation layer for the solar array on the stratospheric airship," Renewable Energy, Elsevier, vol. 191(C), pages 318-329.
    14. Celik, Ali Naci & Acikgoz, NasIr, 2007. "Modelling and experimental verification of the operating current of mono-crystalline photovoltaic modules using four- and five-parameter models," Applied Energy, Elsevier, vol. 84(1), pages 1-15, January.
    15. Sharma, Rakhi & Tiwari, G.N., 2012. "Technical performance evaluation of stand-alone photovoltaic array for outdoor field conditions of New Delhi," Applied Energy, Elsevier, vol. 92(C), pages 644-652.
    16. Quesada, B. & Sánchez, C. & Cañada, J. & Royo, R. & Payá, J., 2011. "Experimental results and simulation with TRNSYS of a 7.2Â kWp grid-connected photovoltaic system," Applied Energy, Elsevier, vol. 88(5), pages 1772-1783, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Durisch, Wilhelm & Lam, King-Hang & Close, Josie, 2006. "Efficiency and degradation of a copper indium diselenide photovoltaic module and yearly output at a sunny site in Jordan," Applied Energy, Elsevier, vol. 83(12), pages 1339-1350, December.
    2. Al-Soud, Mohammed S. & Hrayshat, Eyad S., 2004. "Rural photovoltaic electrification program in Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 8(6), pages 593-598, December.
    3. Badran, Omar & Eck, Markus, 2006. "The application of parabolic trough technology under Jordanian climate," Renewable Energy, Elsevier, vol. 31(6), pages 791-802.
    4. Mousazadeh, Hossein & Keyhani, Alireza & Javadi, Arzhang & Mobli, Hossein & Abrinia, Karen & Sharifi, Ahmad, 2009. "A review of principle and sun-tracking methods for maximizing solar systems output," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(8), pages 1800-1818, October.
    5. George, Mel & Banerjee, Rangan, 2011. "A methodology for analysis of impacts of grid integration of renewable energy," Energy Policy, Elsevier, vol. 39(3), pages 1265-1276, March.
    6. Adnan Aslam & Naseer Ahmed & Safian Ahmed Qureshi & Mohsen Assadi & Naveed Ahmed, 2022. "Advances in Solar PV Systems; A Comprehensive Review of PV Performance, Influencing Factors, and Mitigation Techniques," Energies, MDPI, vol. 15(20), pages 1-52, October.
    7. Bojan Kranjec & Sasa Sladic & Wojciech Giernacki & Neven Bulic, 2018. "PV System Design and Flight Efficiency Considerations for Fixed-Wing Radio-Controlled Aircraft—A Case Study," Energies, MDPI, vol. 11(10), pages 1-12, October.
    8. Gong, Yujian & Wang, Zuo & Lai, Zeyu & Jiang, Minlin, 2021. "TVACPSO-assisted analysis of the effects of temperature and irradiance on the PV module performances," Energy, Elsevier, vol. 227(C).
    9. Durisch, W. & Urban, J. & Smestad, G., 1996. "Characterisation of solar cells and modules under actual operating conditions," Renewable Energy, Elsevier, vol. 8(1), pages 359-366.
    10. Nsengiyumva, Walter & Chen, Shi Guo & Hu, Lihua & Chen, Xueyong, 2018. "Recent advancements and challenges in Solar Tracking Systems (STS): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 250-279.
    11. Hrayshat, Eyad S., 2005. "Wind availability and its potentials for electricity generation in Tafila, Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(1), pages 111-117, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:65:y:2000:i:1-4:p:273-284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.