IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v355y2024ics0306261923015970.html
   My bibliography  Save this article

Optimization of membrane thickness for proton exchange membrane electrolyzer considering hydrogen production efficiency and hydrogen permeation phenomenon

Author

Listed:
  • Li, Yuxuan
  • Li, Hongkun
  • Liu, Weiqun
  • Zhu, Qiao

Abstract

Reducing the membrane thickness of Proton exchange membrane (PEM) electrolyzer was found to efficiently promote the hydrogen production rate. However, it can also aggravate the phenomenon of hydrogen permeation, leading to an increased hydrogen content on the anode side and posing a risk of explosions. Thus, optimal design of the membrane thickness of PEM electrolyzer systems is crucial to ensure both safe and efficient hydrogen production. In this paper, we propose two optimization problems for the membrane thicknesses, aiming at achieving a balance between the hydrogen content on the anode side and the hydrogen production rate under constant and varying power input conditions. First, the theoretical model of a PEM electrolyzer is established, and a photovoltaic-PEM electrolyzer system is considered to provide varying power input conditions. Then, the two optimization problems are formulated and resolved using the sequential quadratic programming (SQP) and particle swarm optimization (PSO) algorithms, respectively. Our results reveal that the optimal membrane thickness decreases as the constant input power increases. This suggests that high/low power inputs require thin/thick membranes. For varying power input, we collected one year of solar radiation intensity data from four different regions in China. The findings demonstrate that the selection of the optimal membrane thickness depends not only on the average solar radiation intensity but also on its seasonal variations. By applying these strategies, we effectively optimize the membrane thickness in PEM electrolyzer systems, thereby enhancing the efficiency and safety of hydrogen production. The outcomes provide valuable insights for selecting the appropriate membrane thickness in regions with varying solar radiation intensities and accounting for seasonal variations in solar radiation.

Suggested Citation

  • Li, Yuxuan & Li, Hongkun & Liu, Weiqun & Zhu, Qiao, 2024. "Optimization of membrane thickness for proton exchange membrane electrolyzer considering hydrogen production efficiency and hydrogen permeation phenomenon," Applied Energy, Elsevier, vol. 355(C).
  • Handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923015970
    DOI: 10.1016/j.apenergy.2023.122233
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923015970
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122233?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khatib, F.N. & Wilberforce, Tabbi & Ijaodola, Oluwatosin & Ogungbemi, Emmanuel & El-Hassan, Zaki & Durrant, A. & Thompson, J. & Olabi, A.G., 2019. "Material degradation of components in polymer electrolyte membrane (PEM) electrolytic cell and mitigation mechanisms: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 111(C), pages 1-14.
    2. Scheepers, Fabian & Stähler, Markus & Stähler, Andrea & Rauls, Edward & Müller, Martin & Carmo, Marcelo & Lehnert, Werner, 2021. "Temperature optimization for improving polymer electrolyte membrane-water electrolysis system efficiency," Applied Energy, Elsevier, vol. 283(C).
    3. Xia, Lingchao & Ni, Meng & He, Qijiao & Xu, Qidong & Cheng, Chun, 2021. "Optimization of gas diffusion layer in high temperature PEMFC with the focuses on thickness and porosity," Applied Energy, Elsevier, vol. 300(C).
    4. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    5. Yao, Jing & Wu, Zhen & Wang, Huan & Yang, Fusheng & Xuan, Jin & Xing, Lei & Ren, Jianwei & Zhang, Zaoxiao, 2022. "Design and multi-objective optimization of low-temperature proton exchange membrane fuel cells with efficient water recovery and high electrochemical performance," Applied Energy, Elsevier, vol. 324(C).
    6. Lee, Hye-One & Yesuraj, Johnbosco & Kim, Kibum, 2022. "Parametric study to optimize proton exchange membrane electrolyzer cells," Applied Energy, Elsevier, vol. 314(C).
    7. Hereher, Mohamed & El Kenawy, Ahmed M., 2020. "Exploring the potential of solar, tidal, and wind energy resources in Oman using an integrated climatic-socioeconomic approach," Renewable Energy, Elsevier, vol. 161(C), pages 662-675.
    8. Rahman, Abidur & Farrok, Omar & Haque, Md Mejbaul, 2022. "Environmental impact of renewable energy source based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    9. Hu, Kewei & Fang, Jiakun & Ai, Xiaomeng & Huang, Danji & Zhong, Zhiyao & Yang, Xiaobo & Wang, Lei, 2022. "Comparative study of alkaline water electrolysis, proton exchange membrane water electrolysis and solid oxide electrolysis through multiphysics modeling," Applied Energy, Elsevier, vol. 312(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kumar, S. Shiva & Ni, Aleksey & Himabindu, V. & Lim, Hankwon, 2023. "Experimental and simulation of PEM water electrolyser with Pd/PN-CNPs electrodes for hydrogen evolution reaction: Performance assessment and validation," Applied Energy, Elsevier, vol. 348(C).
    2. Megy, Camille & Massol, Olivier, 2023. "Is Power-to-Gas always beneficial? The implications of ownership structure," Energy Economics, Elsevier, vol. 128(C).
    3. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Shirizadeh, Behrang & Quirion, Philippe, 2022. "The importance of renewable gas in achieving carbon-neutrality: Insights from an energy system optimization model," Energy, Elsevier, vol. 255(C).
    5. Wang, Jianxiao & An, Qi & Zhao, Yue & Pan, Guangsheng & Song, Jie & Hu, Qinran & Tan, Chin-Woo, 2023. "Role of electrolytic hydrogen in smart city decarbonization in China," Applied Energy, Elsevier, vol. 336(C).
    6. Lamichhane, Pradeep & Pourali, Nima & Scott, Lauren & Tran, Nam N. & Lin, Liangliang & Gelonch, Marc Escribà & Rebrov, Evgeny V. & Hessel, Volker, 2024. "Critical review: ‘Green’ ethylene production through emerging technologies, with a focus on plasma catalysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    7. Dong, Tianshu & Duan, Xiudong & Huang, Yuanyuan & Huang, Danji & Luo, Yingdong & Liu, Ziyu & Ai, Xiaomeng & Fang, Jiakun & Song, Chaolong, 2024. "Enhancement of hydrogen production via optimizing micro-structures of electrolyzer on a microfluidic platform," Applied Energy, Elsevier, vol. 356(C).
    8. Yassine Charabi & Sabah Abdul-Wahab & Abdul Majeed Al-Mahruqi & Selma Osman & Isra Osman, 2022. "The potential estimation and cost analysis of wind energy production in Oman," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 24(4), pages 5917-5937, April.
    9. Taehyung Koo & Rockkil Ko & Dongwoo Ha & Jaeyoung Han, 2023. "Development of Model-Based PEM Water Electrolysis HILS (Hardware-in-the-Loop Simulation) System for State Evaluation and Fault Detection," Energies, MDPI, vol. 16(8), pages 1-18, April.
    10. Cosgrove, Paul & Roulstone, Tony & Zachary, Stan, 2023. "Intermittency and periodicity in net-zero renewable energy systems with storage," Renewable Energy, Elsevier, vol. 212(C), pages 299-307.
    11. Chen, Ke & Luo, Zongkai & Zou, Guofu & He, Dandi & Xiong, Zhongzhuang & Zhou, Yu & Chen, Ben, 2024. "Multi-objective optimization of gradient gas diffusion layer structures for enhancing proton exchange membrane fuel cell performance based on response surface methodology and non-dominated sorting gen," Energy, Elsevier, vol. 288(C).
    12. King, Marcus & Jain, Anjali & Bhakar, Rohit & Mathur, Jyotirmay & Wang, Jihong, 2021. "Overview of current compressed air energy storage projects and analysis of the potential underground storage capacity in India and the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    13. Olabi, A.G. & Wilberforce, Tabbi & Abdelkareem, Mohammad Ali, 2021. "Fuel cell application in the automotive industry and future perspective," Energy, Elsevier, vol. 214(C).
    14. Sheeraz Iqbal & Salman Habib & Muhammad Ali & Aqib Shafiq & Anis ur Rehman & Emad M. Ahmed & Tahir Khurshaid & Salah Kamel, 2022. "The Impact of V2G Charging/Discharging Strategy on the Microgrid Environment Considering Stochastic Methods," Sustainability, MDPI, vol. 14(20), pages 1-22, October.
    15. Wakui, Tetsuya & Akai, Kazuki & Yokoyama, Ryohei, 2022. "Shrinking and receding horizon approaches for long-term operational planning of energy storage and supply systems," Energy, Elsevier, vol. 239(PD).
    16. Yu, Jinna & Tang, Yuk Ming & Chau, Ka Yin & Nazar, Raima & Ali, Sajid & Iqbal, Wasim, 2022. "Role of solar-based renewable energy in mitigating CO2 emissions: Evidence from quantile-on-quantile estimation," Renewable Energy, Elsevier, vol. 182(C), pages 216-226.
    17. Xu, Chenyang & Wang, Jian & Wang, Jianzhong & Yang, Kun & Li, Guangzhong & Gao, Wenbin & Wang, Hao & Zhao, Shaoyang, 2024. "Structural optimization study on porous transport layers of sintered titanium for polymer electrolyte membrane electrolyzers," Applied Energy, Elsevier, vol. 357(C).
    18. Wolf, Isabel & Holzapfel, Peter K.R. & Meschede, Henning & Finkbeiner, Matthias, 2023. "On the potential of temporally resolved GHG emission factors for load shifting: A case study on electrified steam generation," Applied Energy, Elsevier, vol. 348(C).
    19. Pan, Mingzhang & Pan, Chengjie & Li, Chao & Zhao, Jian, 2021. "A review of membranes in proton exchange membrane fuel cells: Transport phenomena, performance and durability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    20. He, X. & Wang, F. & Wallington, T.J. & Shen, W. & Melaina, M.W. & Kim, H.C. & De Kleine, R. & Lin, T. & Zhang, S. & Keoleian, G.A. & Lu, X. & Wu, Y., 2021. "Well-to-wheels emissions, costs, and feedstock potentials for light-duty hydrogen fuel cell vehicles in China in 2017 and 2030," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:355:y:2024:i:c:s0306261923015970. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.