IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v288y2024ics0360544223031870.html
   My bibliography  Save this article

Multi-objective optimization of gradient gas diffusion layer structures for enhancing proton exchange membrane fuel cell performance based on response surface methodology and non-dominated sorting genetic algorithm-III

Author

Listed:
  • Chen, Ke
  • Luo, Zongkai
  • Zou, Guofu
  • He, Dandi
  • Xiong, Zhongzhuang
  • Zhou, Yu
  • Chen, Ben

Abstract

The gas diffusion layer structure has a significant impact on water and gas transport in proton exchange membrane fuel cell (PEMFC). In this study, a multi-objective optimization (MOO) method is applied to optimize the PEMFC gas diffusion layer (GDL) structures for performance enhancement. Nine design parameters are studied to analyses the output performance of the fuel cell and the average water content of the membrane, oxygen concentration non-uniformity, power density and system efficiency are used as performance indexes. The MOO forms the response surface regression model based on the three-dimensional numerical model of PEMFC, and the response surface methodology after processing through the non-dominated sorting genetic algorithm-III (NSGA-III) to obtain the Pareto frontier, and prioritizes the best operating conditions and structures based on technique for order preference by similarity to an ideal solution (TOPSIS). Compared with the reference point, the performance indexes of the decision point obtained by the NSGA-III algorithm and TOPSIS algorithm is enhanced by 0.45 %, 42.06 %, 2.99 % and 0.25 %, respectively. This study presents a new multi-objective optimization method for optimizing operating conditions combine with GDL structures for building efficient PEMFC, which provides a solution for achieving higher performance. The optimal results in this paper can provide some guidance for fuel cell performance improvement and control optimization.

Suggested Citation

  • Chen, Ke & Luo, Zongkai & Zou, Guofu & He, Dandi & Xiong, Zhongzhuang & Zhou, Yu & Chen, Ben, 2024. "Multi-objective optimization of gradient gas diffusion layer structures for enhancing proton exchange membrane fuel cell performance based on response surface methodology and non-dominated sorting gen," Energy, Elsevier, vol. 288(C).
  • Handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031870
    DOI: 10.1016/j.energy.2023.129793
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544223031870
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2023.129793?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:288:y:2024:i:c:s0360544223031870. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.