IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923014484.html
   My bibliography  Save this article

Hydrothermal bio-char as a foaming agent for electric arc furnace steelmaking: Performance and mechanism

Author

Listed:
  • Wei, Rufei
  • Zheng, Xueting
  • Zhu, Yulong
  • Feng, Shanghuan
  • Long, Hongming
  • Xu, Chunbao Charles

Abstract

Electric arc furnace (EAF) foaming agent protects the furnace lining, reduces electricity consumption, and shortens smelting time in steelmaking process. Carbon-neutral EAF foaming agents with satisfactory foaming performance are of great significance for energy-saving and emission reduction in EAF steelmaking. In this study, effects of hydrothermal variables on the foaming performance of EAF slag with bio-char and the associated mechanism were investigated. Meanwhile, the existing method for evaluating EAF slag foaming performance was upgraded, by developing a real-time, dynamic and accurate monitoring method. It was demonstrated that effects of hydrothermal variables on EAF slag foaming with the resultant bio-char followed the order of hydrothermal temperature > solid/liquid ratio > agitation speed > residence time. A combination of hydrothermal temperature at 280 °C, residence time for 4 h, agitation speed at 1050 r/min, solid/liquid ratio of 1:30 resulted in bio-char as the foaming agent with the effective foaming time up to 353 s, much higher than that of fossil derived foaming agent (219 s). When applied with EAF slag for foaming, the porous structure of bio-char contributed to a more constant slag viscosity at 0.30–0.32 Pa‧s, and a decelerated reduction of surface tension, which effectively extended the foaming time and stabilized the foaming performance. The application of bio-char also led to a more complete reaction in EAF in a shorter time. Bio-char obtained via hydrothermal carbonization of pine sawdust performed satisfactorily as an EAF foaming agent and it is advantageous over the fossil derived foaming agent.

Suggested Citation

  • Wei, Rufei & Zheng, Xueting & Zhu, Yulong & Feng, Shanghuan & Long, Hongming & Xu, Chunbao Charles, 2024. "Hydrothermal bio-char as a foaming agent for electric arc furnace steelmaking: Performance and mechanism," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014484
    DOI: 10.1016/j.apenergy.2023.122084
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923014484
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122084?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Muench, Stefan & Guenther, Edeltraud, 2013. "A systematic review of bioenergy life cycle assessments," Applied Energy, Elsevier, vol. 112(C), pages 257-273.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Emblemsvåg, Jan, 2022. "Wind energy is not sustainable when balanced by fossil energy," Applied Energy, Elsevier, vol. 305(C).
    2. Eksi, Guner & Karaosmanoglu, Filiz, 2017. "Combined bioheat and biopower: A technology review and an assessment for Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1313-1332.
    3. Hadi Karimi & Sandra D. Ekşioğlu & Michael Carbajales-Dale, 2021. "A biobjective chance constrained optimization model to evaluate the economic and environmental impacts of biopower supply chains," Annals of Operations Research, Springer, vol. 296(1), pages 95-130, January.
    4. Kis, Zoltán & Pandya, Nikul & Koppelaar, Rembrandt H.E.M., 2018. "Electricity generation technologies: Comparison of materials use, energy return on investment, jobs creation and CO2 emissions reduction," Energy Policy, Elsevier, vol. 120(C), pages 144-157.
    5. Liu, Huacai & Huang, Yanqin & Yuan, Hongyou & Yin, Xiuli & Wu, Chuangzhi, 2018. "Life cycle assessment of biofuels in China: Status and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 301-322.
    6. Claudiu Cicea & Corina Marinescu & Nicolae Pintilie, 2021. "New Methodological Approach for Performance Assessment in the Bioenergy Field," Energies, MDPI, vol. 14(4), pages 1-19, February.
    7. Maria Pergola & Angelo Rita & Alfonso Tortora & Maria Castellaneta & Marco Borghetti & Antonio Sergio De Franchi & Antonio Lapolla & Nicola Moretti & Giovanni Pecora & Domenico Pierangeli & Luigi Toda, 2020. "Identification of Suitable Areas for Biomass Power Plant Construction through Environmental Impact Assessment of Forest Harvesting Residues Transportation," Energies, MDPI, vol. 13(11), pages 1-16, May.
    8. Levasseur, Annie & Bahn, Olivier & Beloin-Saint-Pierre, Didier & Marinova, Mariya & Vaillancourt, Kathleen, 2017. "Assessing butanol from integrated forest biorefinery: A combined techno-economic and life cycle approach," Applied Energy, Elsevier, vol. 198(C), pages 440-452.
    9. Murphy, Fionnuala & Devlin, Ger & McDonnell, Kevin, 2014. "Forest biomass supply chains in Ireland: A life cycle assessment of GHG emissions and primary energy balances," Applied Energy, Elsevier, vol. 116(C), pages 1-8.
    10. Fan, Yee Van & Romanenko, Sergey & Gai, Limei & Kupressova, Ekaterina & Varbanov, Petar Sabev & Klemeš, Jiří Jaromír, 2021. "Biomass integration for energy recovery and efficient use of resources: Tomsk Region," Energy, Elsevier, vol. 235(C).
    11. Dias, Goretty M. & Ayer, Nathan W. & Kariyapperuma, Kumudinie & Thevathasan, Naresh & Gordon, Andrew & Sidders, Derek & Johannesson, Gudmundur H., 2017. "Life cycle assessment of thermal energy production from short-rotation willow biomass in Southern Ontario, Canada," Applied Energy, Elsevier, vol. 204(C), pages 343-352.
    12. Liu, Yigang & Li, Guoxuan & Chen, Zhengrun & Shen, Yuanyuan & Zhang, Hongru & Wang, Shuai & Qi, Jianguang & Zhu, Zhaoyou & Wang, Yinglong & Gao, Jun, 2020. "Comprehensive analysis of environmental impacts and energy consumption of biomass-to-methanol and coal-to-methanol via life cycle assessment," Energy, Elsevier, vol. 204(C).
    13. Pierie, F. & van Someren, C.E.J. & Benders, R.M.J. & Bekkering, J. & van Gemert, W.J.Th. & Moll, H.C., 2015. "Environmental and energy system analysis of bio-methane production pathways: A comparison between feedstocks and process optimizations," Applied Energy, Elsevier, vol. 160(C), pages 456-466.
    14. Patel, Madhumita & Zhang, Xiaolei & Kumar, Amit, 2016. "Techno-economic and life cycle assessment on lignocellulosic biomass thermochemical conversion technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1486-1499.
    15. Daniele Cocco & Paola A. Deligios & Luigi Ledda & Leonardo Sulas & Adriana Virdis & Gianluca Carboni, 2014. "LCA Study of Oleaginous Bioenergy Chains in a Mediterranean Environment," Energies, MDPI, vol. 7(10), pages 1-24, September.
    16. Manzini, Riccardo & Accorsi, Riccardo & Gamberi, Mauro & Penazzi, Stefano, 2015. "Modeling class-based storage assignment over life cycle picking patterns," International Journal of Production Economics, Elsevier, vol. 170(PC), pages 790-800.
    17. Ciechanowski, Wojciech & Maciejczak, Mariusz, 2023. "Functioning of Agricultural Biogas Plants from the Perspective of Transaction Costs-A Case Study," Roczniki (Annals), Polish Association of Agricultural Economists and Agribusiness - Stowarzyszenie Ekonomistow Rolnictwa e Agrobiznesu (SERiA), vol. 2023(4).
    18. Nikodinoska, Natasha & Buonocore, Elvira & Paletto, Alessandro & Franzese, Pier Paolo, 2017. "Wood-based bioenergy value chain in mountain urban districts: An integrated environmental accounting framework," Applied Energy, Elsevier, vol. 186(P2), pages 197-210.
    19. Sastre, C.M. & González-Arechavala, Y. & Santos, A.M., 2015. "Global warming and energy yield evaluation of Spanish wheat straw electricity generation – A LCA that takes into account parameter uncertainty and variability," Applied Energy, Elsevier, vol. 154(C), pages 900-911.
    20. Weldu, Yemane W., 2017. "Life cycle human health and ecosystem quality implication of biomass-based strategies to climate change mitigation," Renewable Energy, Elsevier, vol. 108(C), pages 11-18.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014484. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.