IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v353y2024ipas0306261923014149.html
   My bibliography  Save this article

Simulation model to analyze the spatial distribution of solar radiation in agrivoltaic Mediterranean greenhouses and its effect on crop water needs

Author

Listed:
  • Torrente, Cristóbal J.
  • Reca, Juan
  • López-Luque, Rafael
  • Martínez, Juan
  • Casares, Francisco J.

Abstract

Agrivoltaics is a new paradigm that combines agricultural and renewable energy production, making agriculture more sustainable, profitable, and resilient. Applying the agrivoltaics approach to greenhouse production presents both a challenge and an opportunity. The opportunity lies in the use of greenhouse rooftops to install PV panels to provide required shading in hot summer months in a more efficient and profitable way. The challenge relates to the fact that the intensity and uniformity of the shading may affect crop development and yield.

Suggested Citation

  • Torrente, Cristóbal J. & Reca, Juan & López-Luque, Rafael & Martínez, Juan & Casares, Francisco J., 2024. "Simulation model to analyze the spatial distribution of solar radiation in agrivoltaic Mediterranean greenhouses and its effect on crop water needs," Applied Energy, Elsevier, vol. 353(PA).
  • Handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014149
    DOI: 10.1016/j.apenergy.2023.122050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261923014149
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2023.122050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reca, J. & Torrente, C. & López-Luque, R. & Martínez, J., 2016. "Feasibility analysis of a standalone direct pumping photovoltaic system for irrigation in Mediterranean greenhouses," Renewable Energy, Elsevier, vol. 85(C), pages 1143-1154.
    2. Julián Ignacio Monís & Rafael López-Luque & Juan Reca & Juan Martínez, 2020. "Multistage Bounded Evolutionary Algorithm to Optimize the Design of Sustainable Photovoltaic (PV) Pumping Irrigation Systems with Storage," Sustainability, MDPI, vol. 12(3), pages 1-17, January.
    3. López-Luque, R. & Reca, J. & Martínez, J., 2015. "Optimal design of a standalone direct pumping photovoltaic system for deficit irrigation of olive orchards," Applied Energy, Elsevier, vol. 149(C), pages 13-23.
    4. Zavala, V. & López-Luque, R. & Reca, J. & Martínez, J. & Lao, M.T., 2020. "Optimal management of a multisector standalone direct pumping photovoltaic irrigation system," Applied Energy, Elsevier, vol. 260(C).
    5. Andrea Colantoni & Danilo Monarca & Alvaro Marucci & Massimo Cecchini & Ilaria Zambon & Federico Di Battista & Diego Maccario & Maria Grazia Saporito & Margherita Beruto, 2018. "Solar Radiation Distribution inside a Greenhouse Prototypal with Photovoltaic Mobile Plant and Effects on Flower Growth," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Julián Ignacio Monís & Rafael López-Luque & Juan Reca & Juan Martínez, 2020. "Multistage Bounded Evolutionary Algorithm to Optimize the Design of Sustainable Photovoltaic (PV) Pumping Irrigation Systems with Storage," Sustainability, MDPI, vol. 12(3), pages 1-17, January.
    2. Allouhi, A. & Buker, M.S. & El-houari, H. & Boharb, A. & Benzakour Amine, M. & Kousksou, T. & Jamil, A., 2019. "PV water pumping systems for domestic uses in remote areas: Sizing process, simulation and economic evaluation," Renewable Energy, Elsevier, vol. 132(C), pages 798-812.
    3. Zavala, V. & López-Luque, R. & Reca, J. & Martínez, J. & Lao, M.T., 2020. "Optimal management of a multisector standalone direct pumping photovoltaic irrigation system," Applied Energy, Elsevier, vol. 260(C).
    4. Ludmil Stoyanov & Ivan Bachev & Zahari Zarkov & Vladimir Lazarov & Gilles Notton, 2021. "Multivariate Analysis of a Wind–PV-Based Water Pumping Hybrid System for Irrigation Purposes," Energies, MDPI, vol. 14(11), pages 1-28, May.
    5. Mérida García, A. & Gallagher, J. & McNabola, A. & Camacho Poyato, E. & Montesinos Barrios, P. & Rodríguez Díaz, J.A., 2019. "Comparing the environmental and economic impacts of on- or off-grid solar photovoltaics with traditional energy sources for rural irrigation systems," Renewable Energy, Elsevier, vol. 140(C), pages 895-904.
    6. Mohamed N. Ibrahim & Hegazy Rezk & Mujahed Al-Dhaifallah & Peter Sergeant, 2020. "Modelling and Design Methodology of an Improved Performance Photovoltaic Pumping System Employing Ferrite Magnet Synchronous Reluctance Motors," Mathematics, MDPI, vol. 8(9), pages 1-17, August.
    7. Mohammed Wazed, Saeed & Hughes, Ben Richard & O’Connor, Dominic & Kaiser Calautit, John, 2018. "A review of sustainable solar irrigation systems for Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1206-1225.
    8. Carricondo-Antón, J.M. & Jiménez-Bello, M.A. & Manzano Juárez, J. & Royuela Tomas, A. & Sala, A., 2022. "Evaluating the use of meteorological predictions in directly pumped irrigational operations using photovoltaic energy," Agricultural Water Management, Elsevier, vol. 266(C).
    9. Boutelhig, Azzedine & Hanini, Salah & Arab, Amar Hadj, 2018. "Geospatial characteristics investigation of suitable areas for photovoltaic water pumping erections, in the southern region of Ghardaia, Algeria," Energy, Elsevier, vol. 165(PA), pages 235-245.
    10. Aliyu, Mansur & Hassan, Ghassan & Said, Syed A. & Siddiqui, Muhammad U. & Alawami, Ali T. & Elamin, Ibrahim M., 2018. "A review of solar-powered water pumping systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 87(C), pages 61-76.
    11. Mérida García, Aida & Gallagher, John & Rodríguez Díaz, Juan Antonio & McNabola, Aonghus, 2024. "An economic and environmental optimization model for sizing a hybrid renewable energy and battery storage system in off-grid farms," Renewable Energy, Elsevier, vol. 220(C).
    12. Yano, Akira & Cossu, Marco, 2019. "Energy sustainable greenhouse crop cultivation using photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 116-137.
    13. La Notte, Luca & Giordano, Lorena & Calabrò, Emanuele & Bedini, Roberto & Colla, Giuseppe & Puglisi, Giovanni & Reale, Andrea, 2020. "Hybrid and organic photovoltaics for greenhouse applications," Applied Energy, Elsevier, vol. 278(C).
    14. Jordehi, A. Rezaee, 2016. "Parameter estimation of solar photovoltaic (PV) cells: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 61(C), pages 354-371.
    15. D'Agostino, D. & Minelli, F. & D'Urso, M. & Minichiello, F., 2022. "Fixed and tracking PV systems for Net Zero Energy Buildings: Comparison between yearly and monthly energy balance," Renewable Energy, Elsevier, vol. 195(C), pages 809-824.
    16. Jose Manuel Barrera & Alejandro Reina & Alejandro Maté & Juan Carlos Trujillo, 2020. "Solar Energy Prediction Model Based on Artificial Neural Networks and Open Data," Sustainability, MDPI, vol. 12(17), pages 1-20, August.
    17. Andrea Colantoni & Danilo Monarca & Massimo Cecchini & Enrico Maria Mosconi & Stefano Poponi, 2018. "Small-Scale Energy Conversion of Agro-Forestry Residues for Local Benefits and European Competitiveness," Sustainability, MDPI, vol. 11(1), pages 1-12, December.
    18. Aldo Barrueto Guzmán & Rodrigo Barraza Vicencio & Jorge Alfredo Ardila-Rey & Eduardo Núñez Ahumada & Arturo González Araya & Gerardo Arancibia Moreno, 2018. "A Cost-Effective Methodology for Sizing Solar PV Systems for Existing Irrigation Facilities in Chile," Energies, MDPI, vol. 11(7), pages 1-18, July.
    19. Li, Changsheng & Wang, Haiyu & Miao, Hong & Ye, Bin, 2017. "The economic and social performance of integrated photovoltaic and agricultural greenhouses systems: Case study in China," Applied Energy, Elsevier, vol. 190(C), pages 204-212.
    20. Miguel Ángel Pardo Picazo & Juan Manzano Juárez & Diego García-Márquez, 2018. "Energy Consumption Optimization in Irrigation Networks Supplied by a Standalone Direct Pumping Photovoltaic System," Sustainability, MDPI, vol. 10(11), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:353:y:2024:i:pa:s0306261923014149. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.