IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v321y2022ics0306261922006729.html
   My bibliography  Save this article

Improving the passive survivability of residential buildings during extreme heat events in the Pacific Northwest

Author

Listed:
  • Rempel, Alexandra R.
  • Danis, Jackson
  • Rempel, Alan W.
  • Fowler, Michael
  • Mishra, Sandipan

Abstract

Extreme heat events are becoming more frequent and more severe in the Pacific Northwest and in comparable dry-summer climates worldwide, increasing the occurrence of heat-related illness and death. Much of this risk is attributed to overheating in multifamily dwellings, particularly in neighborhoods with abundant asphalt, few trees, and limited financial resources. Air-conditioning expansion is problematic, however, because it creates vulnerability to operational costs and power outages, while expelled hot air intensifies urban heat island effects. In contrast, passive cooling strategies that deflect solar radiation and recruit the cool night air typical of Mediterranean, semi-arid, and arid climates are quite promising, but their abilities to improve residential survivability during extreme heat have not yet been explored. To understand this potential, here we investigate the extent to which well-controlled shading and natural ventilation, in some cases with fan assistance, could have diminished the hours in which indoor heat index levels exceeded ‘caution’, ‘extreme caution’, ‘danger’, and ‘extreme danger’ thresholds during the June 2021 heat wave in the Pacific Northwest; building thermal performance was simulated in EnergyPlus under conditions experienced by Vancouver BC, Seattle WA, Spokane WA, Portland OR, and Eugene OR. Strikingly, we find that in Portland, where the highest temperatures occurred, integrated shading and natural ventilation eliminated all hours above the danger threshold during the 3-day event, lowering peak indoor air temperatures by approximately 14°C (25°F); without cooling, all 72h exceeded this threshold. During the encompassing 10-day period, these passive measures provided 130–150h of thermal relief; baseline conditions without cooling provided none. Additionally, passive cooling reduced active cooling loads by up to 80%. Together, these results show the immediate, substantial value of requiring effective operable shading and secure operable windows in apartments in mild dry-summer climates with rising heatwave intensity, as well as public health messaging to support the productive operation of these elements.

Suggested Citation

  • Rempel, Alexandra R. & Danis, Jackson & Rempel, Alan W. & Fowler, Michael & Mishra, Sandipan, 2022. "Improving the passive survivability of residential buildings during extreme heat events in the Pacific Northwest," Applied Energy, Elsevier, vol. 321(C).
  • Handle: RePEc:eee:appene:v:321:y:2022:i:c:s0306261922006729
    DOI: 10.1016/j.apenergy.2022.119323
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261922006729
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2022.119323?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roetzel, Astrid & Tsangrassoulis, Aris & Dietrich, Udo & Busching, Sabine, 2010. "A review of occupant control on natural ventilation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1001-1013, April.
    2. Judith Estep & Tugrul U. Daim, 2018. "Technology Assessment: Demand Response Technologies in the Pacific Northwest," Innovation, Technology, and Knowledge Management, in: Tugrul U. Daim & Leong Chan & Judith Estep (ed.), Infrastructure and Technology Management, chapter 0, pages 177-210, Springer.
    3. John Dialesandro & Noli Brazil & Stephen Wheeler & Yaser Abunnasr, 2021. "Dimensions of Thermal Inequity: Neighborhood Social Demographics and Urban Heat in the Southwestern U.S," IJERPH, MDPI, vol. 18(3), pages 1-15, January.
    4. Harlan, Sharon L. & Brazel, Anthony J. & Prashad, Lela & Stefanov, William L. & Larsen, Larissa, 2006. "Neighborhood microclimates and vulnerability to heat stress," Social Science & Medicine, Elsevier, vol. 63(11), pages 2847-2863, December.
    5. Jackson Voelkel & Dana Hellman & Ryu Sakuma & Vivek Shandas, 2018. "Assessing Vulnerability to Urban Heat: A Study of Disproportionate Heat Exposure and Access to Refuge by Socio-Demographic Status in Portland, Oregon," IJERPH, MDPI, vol. 15(4), pages 1-14, March.
    6. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Energy saving potential of utilizing natural ventilation under warm conditions – A case study of Mexico," Applied Energy, Elsevier, vol. 130(C), pages 20-32.
    7. Lee, Sau Wai & Lim, Chin Haw & Salleh, Elias @ Ilias Bin, 2016. "Reflective thermal insulation systems in building: A review on radiant barrier and reflective insulation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 643-661.
    8. Tremeac, Brice & Bousquet, Pierre & de Munck, Cecile & Pigeon, Gregoire & Masson, Valery & Marchadier, Colette & Merchat, Michele & Poeuf, Pierre & Meunier, Francis, 2012. "Influence of air conditioning management on heat island in Paris air street temperatures," Applied Energy, Elsevier, vol. 95(C), pages 102-110.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiu, Lei & Wang, Xiaoyang & Wei, Jia, 2023. "Energy security and energy management: The role of extreme natural events," Innovation and Green Development, Elsevier, vol. 2(2).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fei Li & Tan Yigitcanlar & Madhav Nepal & Kien Nguyen Thanh & Fatih Dur, 2022. "Understanding Urban Heat Vulnerability Assessment Methods: A PRISMA Review," Energies, MDPI, vol. 15(19), pages 1-34, September.
    2. Wei Zhang & Phil McManus & Elizabeth Duncan, 2018. "A Raster-Based Subdividing Indicator to Map Urban Heat Vulnerability: A Case Study in Sydney, Australia," IJERPH, MDPI, vol. 15(11), pages 1-20, November.
    3. Emanuele Massaro & Rossano Schifanella & Matteo Piccardo & Luca Caporaso & Hannes Taubenböck & Alessandro Cescatti & Gregory Duveiller, 2023. "Spatially-optimized urban greening for reduction of population exposure to land surface temperature extremes," Nature Communications, Nature, vol. 14(1), pages 1-10, December.
    4. Ascione, Fabrizio & Bellia, Laura & Capozzoli, Alfonso, 2013. "A coupled numerical approach on museum air conditioning: Energy and fluid-dynamic analysis," Applied Energy, Elsevier, vol. 103(C), pages 416-427.
    5. Santágata, Daniela M. & Castesana, Paula & Rössler, Cristina E. & Gómez, Darío R., 2017. "Extreme temperature events affecting the electricity distribution system of the metropolitan area of Buenos Aires (1971–2013)," Energy Policy, Elsevier, vol. 106(C), pages 404-414.
    6. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    7. H. Allen Klaiber & Joshua K. Abbott & V. Kerry Smith, 2017. "Some Like It (Less) Hot: Extracting Trade-Off Measures for Physically Coupled Amenities," Journal of the Association of Environmental and Resource Economists, University of Chicago Press, vol. 4(4), pages 1053-1079.
    8. Liwei Wen & Kyosuke Hiyama, 2018. "Target Air Change Rate and Natural Ventilation Potential Maps for Assisting with Natural Ventilation Design During Early Design Stage in China," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    9. Radhi, Hassan & Sharples, Stephen, 2013. "Quantifying the domestic electricity consumption for air-conditioning due to urban heat islands in hot arid regions," Applied Energy, Elsevier, vol. 112(C), pages 371-380.
    10. Jihye Ryu & Jungsoo Kim, 2021. "Effect of Different HVAC Control Strategies on Thermal Comfort and Adaptive Behavior in High-Rise Apartments," Sustainability, MDPI, vol. 13(21), pages 1-20, October.
    11. Susan Williams & Peng Bi & Jonathan Newbury & Guy Robinson & Dino Pisaniello & Arthur Saniotis & Alana Hansen, 2013. "Extreme Heat and Health: Perspectives from Health Service Providers in Rural and Remote Communities in South Australia," IJERPH, MDPI, vol. 10(11), pages 1-19, October.
    12. Amin Mohammadi & Mahmoud Reza Saghafi & Mansoureh Tahbaz & Farshad Nasrollahi, 2017. "Effects of Vernacular Climatic Strategies (VCS) on Energy Consumption in Common Residential Buildings in Southern Iran: The Case Study of Bushehr City," Sustainability, MDPI, vol. 9(11), pages 1-26, October.
    13. Weihua Dong & Zhao Liu & Lijie Zhang & Qiuhong Tang & Hua Liao & Xian'en Li, 2014. "Assessing Heat Health Risk for Sustainability in Beijing’s Urban Heat Island," Sustainability, MDPI, vol. 6(10), pages 1-24, October.
    14. Martins, Nuno R. & Carrilho da Graça, Guilherme, 2017. "Impact of outdoor PM2.5 on natural ventilation usability in California’s nondomestic buildings," Applied Energy, Elsevier, vol. 189(C), pages 711-724.
    15. Meng, Fanchao & Zhang, Lei & Ren, Guoyu & Zhang, Ruixue, 2023. "Impacts of UHI on variations in cooling loads in buildings during heatwaves: A case study of Beijing and Tianjin, China," Energy, Elsevier, vol. 273(C).
    16. Sara Wilkinson & Renato Castiglia Feitosa, 2015. "Retrofitting Housing with Lightweight Green Roof Technology in Sydney, Australia, and Rio de Janeiro, Brazil," Sustainability, MDPI, vol. 7(1), pages 1-18, January.
    17. Antonio Paone & Jean-Philippe Bacher, 2018. "The Impact of Building Occupant Behavior on Energy Efficiency and Methods to Influence It: A Review of the State of the Art," Energies, MDPI, vol. 11(4), pages 1-19, April.
    18. De Valck, Jeremy & Beames, Alistair & Liekens, Inge & Bettens, Maarten & Seuntjens, Piet & Broekx, Steven, 2019. "Valuing urban ecosystem services in sustainable brownfield redevelopment," Ecosystem Services, Elsevier, vol. 35(C), pages 139-149.
    19. Tao Chen & Anchang Sun & Ruiqing Niu, 2019. "Effect of Land Cover Fractions on Changes in Surface Urban Heat Islands Using Landsat Time-Series Images," IJERPH, MDPI, vol. 16(6), pages 1-18, March.
    20. Antonio Ligsay & Olivier Telle & Richard Paul, 2021. "Challenges to Mitigating the Urban Health Burden of Mosquito-Borne Diseases in the Face of Climate Change," IJERPH, MDPI, vol. 18(9), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:321:y:2022:i:c:s0306261922006729. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.