IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v9y2017i11p1950-d116524.html
   My bibliography  Save this article

Effects of Vernacular Climatic Strategies (VCS) on Energy Consumption in Common Residential Buildings in Southern Iran: The Case Study of Bushehr City

Author

Listed:
  • Amin Mohammadi

    (Faculty of Architecture and Urbanism, Art University of Isfahan, Isfahan 8146834615, Iran)

  • Mahmoud Reza Saghafi

    (Faculty of Architecture and Urbanism, Art University of Isfahan, Isfahan 8146834615, Iran)

  • Mansoureh Tahbaz

    (Faculty of Architecture and Urbanism, Shahid Beheshti University, Tehran 1983969411, Iran)

  • Farshad Nasrollahi

    (Faculty of Architecture and Urbanism, Art University of Isfahan, Isfahan 8146834615, Iran)

Abstract

This study aims to use the vernacular climatic strategies (VCS) of traditional dwellings in Bushehr, in the common residential buildings of this southern Iranian city (which is characterized by its hot and humid climate), and provide answers to the following question: What effects do VCS have in terms of energy consumption in these buildings? This study has been conducted at three levels. At the first level, three context-based climatic solutions including shading, natural ventilation, and insulation of external walls and roofs were identified and selected based on bibliographic study. At the second level, a case study reflecting the current typology of common residential buildings in Bushehr city was selected. A combination of the mentioned climatic solutions was used in the baseline case to create a developed model. Based on the space layout of the developed model and some design criteria, a series of proposed models was also created and modeled. The selected case study building was also used to establish a local weather station at a height of 12 m based on the roof, collecting local climate data which were then used for simulation to improve simulation accuracy. Finally, all models were simulated with the use of Design Builder software under natural ventilation conditions during moderate climatic periods of the year while split air-conditioning systems were used during hot and humid periods. The results showed reductions of 16% in energy consumption and 22% in CO 2 emissions for the developed model, and reductions of 24–26% in energy consumption and 32–34% in CO 2 emissions for the proposed models, as compared with the baseline model. Furthermore, all proposed models achieved lower annual energy consumption when compared with a selection of international sustainable low energy standards and domestic energy performance references for the Middle East region. Further studies are also recommended, and there is potential for combining VCS with other solutions such as on-site renewable energies.

Suggested Citation

  • Amin Mohammadi & Mahmoud Reza Saghafi & Mansoureh Tahbaz & Farshad Nasrollahi, 2017. "Effects of Vernacular Climatic Strategies (VCS) on Energy Consumption in Common Residential Buildings in Southern Iran: The Case Study of Bushehr City," Sustainability, MDPI, vol. 9(11), pages 1-26, October.
  • Handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:1950-:d:116524
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/9/11/1950/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/9/11/1950/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Carlos Rubio-Bellido & Jesus A. Pulido-Arcas & Jose M. Cabeza-Lainez, 2015. "Adaptation Strategies and Resilience to Climate Change of Historic Dwellings," Sustainability, MDPI, vol. 7(4), pages 1-19, March.
    2. Saidur, R., 2009. "Energy consumption, energy savings, and emission analysis in Malaysian office buildings," Energy Policy, Elsevier, vol. 37(10), pages 4104-4113, October.
    3. Rajapaksha, I. & Nagai, H. & Okumiya, M., 2003. "A ventilated courtyard as a passive cooling strategy in the warm humid tropics," Renewable Energy, Elsevier, vol. 28(11), pages 1755-1778.
    4. Abdulazeez Rotimi & Ali Bahadori-Jahromi & Anastasia Mylona & Paulina Godfrey & Darren Cook, 2017. "Estimation and Validation of Energy Consumption in UK Existing Hotel Building Using Dynamic Simulation Software," Sustainability, MDPI, vol. 9(8), pages 1-18, August.
    5. Oropeza-Perez, Ivan & Østergaard, Poul Alberg, 2014. "Energy saving potential of utilizing natural ventilation under warm conditions – A case study of Mexico," Applied Energy, Elsevier, vol. 130(C), pages 20-32.
    6. Huang, Kuo-Tsang & Hwang, Ruey-Lung, 2016. "Future trends of residential building cooling energy and passive adaptation measures to counteract climate change: The case of Taiwan," Applied Energy, Elsevier, vol. 184(C), pages 1230-1240.
    7. Aldossary, Naief A. & Rezgui, Yacine & Kwan, Alan, 2014. "Domestic energy consumption patterns in a hot and humid climate: A multiple-case study analysis," Applied Energy, Elsevier, vol. 114(C), pages 353-365.
    8. Chandel, S.S. & Aggarwal, R.K., 2008. "Performance evaluation of a passive solar building in Western Himalayas," Renewable Energy, Elsevier, vol. 33(10), pages 2166-2173.
    9. Chandel, S.S. & Sharma, Vandna & Marwah, Bhanu M., 2016. "Review of energy efficient features in vernacular architecture for improving indoor thermal comfort conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 459-477.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hannan Amoozad Mahdiraji & Sepas Arzaghi & Gintaras Stauskis & Edmundas Kazimieras Zavadskas, 2018. "A Hybrid Fuzzy BWM-COPRAS Method for Analyzing Key Factors of Sustainable Architecture," Sustainability, MDPI, vol. 10(5), pages 1-26, May.
    2. Pajek, Luka & Košir, Mitja, 2021. "Strategy for achieving long-term energy efficiency of European single-family buildings through passive climate adaptation," Applied Energy, Elsevier, vol. 297(C).
    3. Alkistis E. Kanteraki & Grigorios L. Kyriakopoulos & Miltiadis Zamparas & Vasilis C. Kapsalis & Sofoklis S. Makridis & Giouli Mihalakakou, 2020. "Investigating Thermal Performance of Residential Buildings in Marmari Region, South Evia, Greece," Challenges, MDPI, vol. 11(1), pages 1-22, February.
    4. Eva Lucas Segarra & Hu Du & Germán Ramos Ruiz & Carlos Fernández Bandera, 2019. "Methodology for the Quantification of the Impact of Weather Forecasts in Predictive Simulation Models," Energies, MDPI, vol. 12(7), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abdul Mujeebu, Muhammad & Alshamrani, Othman Subhi, 2016. "Prospects of energy conservation and management in buildings – The Saudi Arabian scenario versus global trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1647-1663.
    2. Yuan Zheng & Yuan Sun & Zhu Wang & Feng Liang, 2022. "Developing Green–Building Design Strategies in the Yangtze River Delta, China through a Coupling Relationship between Geomorphology and Climate," Land, MDPI, vol. 12(1), pages 1-22, December.
    3. Chandel, S.S. & Shrivastva, Rajnish & Sharma, Vikrant & Ramasamy, P., 2016. "Overview of the initiatives in renewable energy sector under the national action plan on climate change in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 866-873.
    4. Emanuele Bonamente & Franco Cotana, 2015. "Carbon and Energy Footprints of Prefabricated Industrial Buildings: A Systematic Life Cycle Assessment Analysis," Energies, MDPI, vol. 8(11), pages 1-17, November.
    5. Muthu Kumaran Gunasegaran & Md Hasanuzzaman & ChiaKwang Tan & Ab Halim Abu Bakar & Vignes Ponniah, 2022. "Energy Analysis, Building Energy Index and Energy Management Strategies for Fast-Food Restaurants in Malaysia," Sustainability, MDPI, vol. 14(20), pages 1-18, October.
    6. Bell, N.O. & Bilbao, J.I. & Kay, M. & Sproul, A.B., 2022. "Future climate scenarios and their impact on heating, ventilation and air-conditioning system design and performance for commercial buildings for 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).
    7. Guoqiang Xu & Hong Jin & Jian Kang, 2019. "Experimental Study on the Indoor Thermo-Hygrometric Conditionsof the Mongolian Yurt," Sustainability, MDPI, vol. 11(3), pages 1-20, January.
    8. Ma, Jun & Cheng, Jack C.P., 2016. "Identifying the influential features on the regional energy use intensity of residential buildings based on Random Forests," Applied Energy, Elsevier, vol. 183(C), pages 193-201.
    9. Ascione, Fabrizio & De Masi, Rosa Francesca & de Rossi, Filippo & Ruggiero, Silvia & Vanoli, Giuseppe Peter, 2016. "Optimization of building envelope design for nZEBs in Mediterranean climate: Performance analysis of residential case study," Applied Energy, Elsevier, vol. 183(C), pages 938-957.
    10. Tong, Zheming & Chen, Yujiao & Malkawi, Ali & Liu, Zhu & Freeman, Richard B., 2016. "Energy saving potential of natural ventilation in China: The impact of ambient air pollution," Applied Energy, Elsevier, vol. 179(C), pages 660-668.
    11. Belén Onecha & Alicia Dotor, 2021. "Simulation Method to Assess Thermal Comfort in Historical Buildings with High-Volume Interior Spaces—The Case of the Gothic Basilica of Sta. Maria del Mar in Barcelona," Sustainability, MDPI, vol. 13(5), pages 1-20, March.
    12. Xiaodong Xu & Fenlan Luo & Wei Wang & Tianzhen Hong & Xiuzhang Fu, 2018. "Performance-Based Evaluation of Courtyard Design in China’s Cold-Winter Hot-Summer Climate Regions," Sustainability, MDPI, vol. 10(11), pages 1-19, October.
    13. Tingzhen Ming & Shengnan Lian & Yongjia Wu & Tianhao Shi & Chong Peng & Yueping Fang & Renaud de Richter & Nyuk Hien Wong, 2021. "Numerical Investigation on the Urban Heat Island Effect by Using a Porous Media Model," Energies, MDPI, vol. 14(15), pages 1-23, August.
    14. Madlool, N.A. & Saidur, R. & Rahim, N.A. & Kamalisarvestani, M., 2013. "An overview of energy savings measures for cement industries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 18-29.
    15. Barbara Vojvodíková & Iva Tichá & Anna Starzewska-Sikorska, 2022. "Implementing Nature-Based Solutions in Urban Spaces in the Context of the Sense of Danger That Citizens May Feel," Land, MDPI, vol. 11(10), pages 1-21, October.
    16. Liwei Wen & Kyosuke Hiyama, 2018. "Target Air Change Rate and Natural Ventilation Potential Maps for Assisting with Natural Ventilation Design During Early Design Stage in China," Sustainability, MDPI, vol. 10(5), pages 1-16, May.
    17. Zhibin Wu & Nianping Li & Haijiao Cui & Jinqing Peng & Haowen Chen & Penglong Liu, 2017. "Using Upper Extremity Skin Temperatures to Assess Thermal Comfort in Office Buildings in Changsha, China," IJERPH, MDPI, vol. 14(10), pages 1-17, September.
    18. Bakhshoodeh, Reza & Ocampo, Carlos & Oldham, Carolyn, 2022. "Thermal performance of green façades: Review and analysis of published data," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    19. Jiayi Shi & Tao Zhang & Hiroatsu Fukuda & Qun Zhang & Lujian Bai, 2022. "Socio-Environmental Responsive Strategy and Sustainable Development of Traditional Tianshui Dwellings," Sustainability, MDPI, vol. 14(14), pages 1-27, July.
    20. Bai, Lujian & Wang, Shusheng, 2019. "Definition of new thermal climate zones for building energy efficiency response to the climate change during the past decades in China," Energy, Elsevier, vol. 170(C), pages 709-719.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:9:y:2017:i:11:p:1950-:d:116524. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.